Department of Psychology, University of California, Berkeley, 3210 Tolman Hall MC 1650, Berkeley, CA 94720-1650, USA.
Trends Cogn Sci. 2010 Aug;14(8):357-64. doi: 10.1016/j.tics.2010.05.004. Epub 2010 Jun 22.
Cognitive science aims to reverse-engineer the mind, and many of the engineering challenges the mind faces involve induction. The probabilistic approach to modeling cognition begins by identifying ideal solutions to these inductive problems. Mental processes are then modeled using algorithms for approximating these solutions, and neural processes are viewed as mechanisms for implementing these algorithms, with the result being a top-down analysis of cognition starting with the function of cognitive processes. Typical connectionist models, by contrast, follow a bottom-up approach, beginning with a characterization of neural mechanisms and exploring what macro-level functional phenomena might emerge. We argue that the top-down approach yields greater flexibility for exploring the representations and inductive biases that underlie human cognition.
认知科学旨在对思维进行逆向工程,而思维所面临的许多工程挑战都涉及归纳。认知建模的概率方法首先要确定这些归纳问题的理想解决方案。然后,使用这些解决方案的近似算法来对心理过程进行建模,将神经过程视为实现这些算法的机制,其结果是从认知过程的功能开始进行自上而下的认知分析。相比之下,典型的连接主义模型采用自下而上的方法,从对神经机制的描述开始,并探索可能出现的宏观功能现象。我们认为,自上而下的方法为探索人类认知的基础表示和归纳偏差提供了更大的灵活性。