Botany Department, University of British Columbia, 3529-6270 University Blvd, Vancouver, B.C., Canada.
Ann Bot. 2010 Sep;106(3):439-55. doi: 10.1093/aob/mcq126. Epub 2010 Jun 24.
Analyses of speciation genes--genes that contribute to the cessation of gene flow between populations--can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation.
Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility).
The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants.
分析物种形成基因——那些导致种群间基因流动停止的基因——可以为种群和物种分化所涉及的生态环境、进化力量和分子机制提供线索。本文讨论了植物中促进生殖隔离(RI)的基因的特征和属性,将其与动物物种形成基因进行了比较,并研究了这些基因能告诉我们哪些关于物种形成的信息。
在植物文献中鉴定出 41 个候选物种形成基因。其中,7 个基因参与了授粉前 RI,1 个基因参与了授粉后、合子前 RI,8 个基因导致杂种不育,25 个基因导致杂种不孕。在不同植物群中,经常发现与 RI 进化相关的基因、基因家族和遗传途径包括:花色素途径及其调控因子(传粉者隔离)、S RNase-SI 基因(单向不亲和性)、抗病基因(杂种坏死)、嵌合线粒体基因(细胞质雄性不育)和五肽重复家族基因(细胞质雄性不育)。
从本文的综述中得出的最令人惊讶的结论是,在广义上,预先合子和合子后 RI 所涉及的基因的身份往往可以从生殖障碍的表型中预测。在植物中,调控变化(顺式和反式)主导了授粉前 RI 的进化,而内在合子后障碍则是由调控突变和蛋白质编码基因的变化共同引起的。此外,功能丧失突变和拷贝数变异经常导致 RI。尽管在植物中,物种形成基因的正选择的直接证据令人惊讶地缺乏,但对基因家族进化的分析以及理论上的考虑表明,多样化选择和遗传冲突在 RI 的进化中起着重要作用。然而,与动物不同的是,植物中大多数候选物种形成基因表现出种内多态性,这与随机因素和/或平衡选择在植物 RI 发育中的重要作用一致。