Suppr超能文献

193nm 超快速紫外光解及其在蛋白质组学工作流程中的应用。

Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows.

机构信息

Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, USA.

出版信息

J Proteome Res. 2010 Aug 6;9(8):4205-14. doi: 10.1021/pr100515x.

Abstract

Ultraviolet photodissociation (UVPD) at 193 nm was implemented on a linear ion trap mass spectrometer for high-throughput proteomic workflows. Upon irradiation by a single 5 ns laser pulse, efficient photodissociation of tryptic peptides was achieved with production of a, b, c, x, y, and z sequence ions, in addition to immonium ions and v and w side-chain loss ions. The factors that influence the UVPD mass spectra and subsequent in silico database searching via SEQUEST were evaluated. Peptide sequence aromaticity and the precursor charge state were found to influence photodissociation efficiency more so than the number of amide chromophores, and the ion trap q-value and number of laser pulses significantly affected the number and abundances of diagnostic product ions (e.g., sequence and immonium ions). Also, photoionization background subtraction was shown to dramatically improve SEQUEST results, especially when peptide signals were low. A liquid chromatography-mass spectrometry (LC-MS)/UVPD strategy was implemented and yielded comparable or better results relative to LC-MS/collision induced dissociation (CID) for analysis of proteolyzed bovine serum albumin and lysed human HT-1080 cytosolic fibrosarcoma cells.

摘要

193nm 的紫外光解(UVPD)被应用于线性离子阱质谱仪,用于高通量蛋白质组学工作流程。在单个 5ns 激光脉冲的照射下,酶解肽得到了有效的光解,产生了 a、b、c、x、y 和 z 序列离子,以及亚稳离子和 v 和 w 侧链丢失离子。评估了影响 UVPD 质谱和随后通过 SEQUEST 进行计算机数据库搜索的因素。发现肽序列的芳香性和前体电荷状态比酰胺发色团的数量更能影响光解效率,离子阱 q 值和激光脉冲数则显著影响诊断产物离子(如序列和亚稳离子)的数量和丰度。此外,光致电离背景扣除被证明可以显著提高 SEQUEST 的结果,尤其是在肽信号较弱时。实施了液相色谱-质谱(LC-MS)/UVPD 策略,与 LC-MS/碰撞诱导解离(CID)相比,用于分析蛋白酶解的牛血清白蛋白和裂解的人 HT-1080 细胞质纤维肉瘤细胞时,得到了相当或更好的结果。

相似文献

1
Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows.
J Proteome Res. 2010 Aug 6;9(8):4205-14. doi: 10.1021/pr100515x.
2
[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
Se Pu. 2025 Feb;43(2):131-138. doi: 10.3724/SP.J.1123.2024.08009.
4
Ultraviolet photodissociation of carboxylate-derivatized peptides in a quadrupole ion trap.
J Am Soc Mass Spectrom. 2011 Jan;22(1):49-56. doi: 10.1007/s13361-010-0016-5. Epub 2011 Jan 21.
6
Ultraviolet photodissociation mass spectrometry of bis-aryl hydrazone conjugated peptides.
Anal Chem. 2009 Jun 15;81(12):4864-72. doi: 10.1021/ac9005233.
7
193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization.
Proteomics. 2011 Apr;11(7):1329-34. doi: 10.1002/pmic.201000565. Epub 2011 Feb 17.
8
Improving Performance Metrics of Ultraviolet Photodissociation Mass Spectrometry by Selective Precursor Ejection.
Anal Chem. 2017 Jan 3;89(1):837-846. doi: 10.1021/acs.analchem.6b03777. Epub 2016 Dec 20.
10
Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization.
J Am Soc Mass Spectrom. 2012 Oct;23(10):1707-15. doi: 10.1007/s13361-012-0424-9. Epub 2012 Aug 16.

引用本文的文献

1
Photolysis of the peptide bond at 193 and 222 nm.
J Chem Phys. 2025 Apr 28;162(16). doi: 10.1063/5.0257551.
2
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
5
Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers.
Medicina (Kaunas). 2023 Sep 27;59(10):1722. doi: 10.3390/medicina59101722.
7
Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool.
Chem Rev. 2022 Apr 27;122(8):7442-7487. doi: 10.1021/acs.chemrev.1c00309. Epub 2021 Nov 2.
10
Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics.
Mol Cell Proteomics. 2020 Feb;19(2):405-420. doi: 10.1074/mcp.TIR119.001638. Epub 2019 Dec 30.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
3
Value of using multiple proteases for large-scale mass spectrometry-based proteomics.
J Proteome Res. 2010 Mar 5;9(3):1323-9. doi: 10.1021/pr900863u.
5
Observation of phosphorylation site-specific dissociation of singly protonated phosphopeptides.
J Am Soc Mass Spectrom. 2010 Jan;21(1):53-9. doi: 10.1016/j.jasms.2009.09.003. Epub 2009 Sep 17.
6
A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed.
Mol Cell Proteomics. 2009 Dec;8(12):2759-69. doi: 10.1074/mcp.M900375-MCP200. Epub 2009 Oct 14.
7
Time-resolved observation of product ions generated by 157 nm photodissociation of singly protonated phosphopeptides.
J Am Soc Mass Spectrom. 2009 Dec;20(12):2334-41. doi: 10.1016/j.jasms.2009.08.021. Epub 2009 Sep 3.
10
Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics.
Angew Chem Int Ed Engl. 2009;48(39):7130-7. doi: 10.1002/anie.200900613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验