Suppr超能文献

丙型肝炎病毒 IRES 元件三螺旋结的结构。

Structure of the three-way helical junction of the hepatitis C virus IRES element.

机构信息

Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom.

出版信息

RNA. 2010 Aug;16(8):1597-609. doi: 10.1261/rna.2158410. Epub 2010 Jun 25.

Abstract

The hepatitis C virus internal ribosome entry site (IRES) element contains a three-way junction that is important in the overall RNA conformation, and for its role in the internal initiation of translation. The junction also illustrates some important conformational principles in the folding of three-way helical junctions. It is formally a 3HS(4) junction, with the possibility of two alternative stacking conformers. However, in principle, the junction can also undergo two steps of branch migration that would form 2HS(1)HS(3) and 2HS(2)HS(2) junctions. Comparative gel electrophoresis and ensemble fluorescence resonance energy transfer (FRET) studies show that the junction is induced to fold by the presence of Mg(2+) ions in low micromolar concentrations, and suggest that the structure adopted is based on coaxial stacking of the two helices that do not terminate in a hairpin loop (i.e., helix IIId). Single-molecule FRET studies confirm this conclusion, and indicate that there is no minor conformer present based on an alternative choice of helical stacking partners. Moreover, analysis of single-molecule FRET data at an 8-msec resolution failed to reveal evidence for structural transitions. It seems probable that this junction adopts a single conformation as a unique and stable fold.

摘要

丙型肝炎病毒内部核糖体进入位点 (IRES) 元件包含一个三链结,它在整体 RNA 构象中很重要,并且在内部翻译起始中发挥作用。该结也说明了三链螺旋结折叠中的一些重要构象原则。它在形式上是一个 3HS(4)结,具有两种可能的堆叠构象。然而,原则上,该结还可以经历两步分支迁移,从而形成 2HS(1)HS(3)和 2HS(2)HS(2)结。比较凝胶电泳和整体荧光共振能量转移 (FRET) 研究表明,结在低微摩尔浓度的 Mg(2+)离子存在下被诱导折叠,并表明所采用的结构基于不终止于发夹环的两个螺旋的同轴堆叠(即螺旋 IIId)。单分子 FRET 研究证实了这一结论,并表明不存在基于替代螺旋堆叠伙伴的次要构象。此外,以 8 毫秒分辨率分析单分子 FRET 数据未能揭示结构转变的证据。似乎这个结采用了一种独特而稳定的折叠方式。

相似文献

1
Structure of the three-way helical junction of the hepatitis C virus IRES element.
RNA. 2010 Aug;16(8):1597-609. doi: 10.1261/rna.2158410. Epub 2010 Jun 25.
2
The dynamic nature of the four-way junction of the hepatitis C virus IRES.
RNA. 2003 Jul;9(7):809-20. doi: 10.1261/rna.5130703.
3
Structures of helical junctions in nucleic acids.
Q Rev Biophys. 2000 May;33(2):109-59. doi: 10.1017/s0033583500003590.
7
Detection of Mg-dependent, coaxial stacking rearrangements in a bulged three-way DNA junction by single-molecule FRET.
Biophys Chem. 2019 Feb;245:25-33. doi: 10.1016/j.bpc.2018.12.001. Epub 2018 Dec 5.
8
The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold.
J Mol Biol. 1999 Sep 24;292(3):513-29. doi: 10.1006/jmbi.1999.3095.
10
A potential RNA drug target in the hepatitis C virus internal ribosomal entry site.
RNA. 2000 Oct;6(10):1423-31. doi: 10.1017/s1355838200000935.

引用本文的文献

1
Structure and mechanism of a methyltransferase ribozyme.
Nat Chem Biol. 2022 May;18(5):556-564. doi: 10.1038/s41589-022-00982-z. Epub 2022 Mar 17.
2
Crystal Structures of Cyanine Fluorophores Stacked onto the End of Double-Stranded RNA.
Biophys J. 2017 Dec 5;113(11):2336-2343. doi: 10.1016/j.bpj.2017.10.002.
4
Tuning RNA folding and function through rational design of junction topology.
Nucleic Acids Res. 2017 Sep 19;45(16):9706-9715. doi: 10.1093/nar/gkx614.
5
Three-way junction conformation dictates self-association of phage packaging RNAs.
RNA Biol. 2016 Jul 2;13(7):635-45. doi: 10.1080/15476286.2016.1190075. Epub 2016 May 24.
6
Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy.
Wiley Interdiscip Rev RNA. 2016 Sep;7(5):683-701. doi: 10.1002/wrna.1358. Epub 2016 May 20.
8
Crystal structure and mechanistic investigation of the twister ribozyme.
Nat Chem Biol. 2014 Sep;10(9):739-44. doi: 10.1038/nchembio.1587. Epub 2014 Jul 20.
9
Secondary structure of a conserved domain in an intron of influenza A M1 mRNA.
Biochemistry. 2014 Aug 19;53(32):5236-48. doi: 10.1021/bi500611j. Epub 2014 Aug 6.
10
The k-junction motif in RNA structure.
Nucleic Acids Res. 2014 Apr;42(8):5322-31. doi: 10.1093/nar/gku144. Epub 2014 Feb 14.

本文引用的文献

1
The structure and folding of branched RNA analyzed by fluorescence resonance energy transfer.
Methods Enzymol. 2009;469:159-87. doi: 10.1016/S0076-6879(09)69008-X.
2
Comparative gel electrophoresis analysis of helical junctions in RNA.
Methods Enzymol. 2009;469:143-57. doi: 10.1016/S0076-6879(09)69007-8. Epub 2009 Nov 17.
3
Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold.
RNA. 2009 Nov;15(11):1949-64. doi: 10.1261/rna.1889509. Epub 2009 Sep 9.
4
The complete VS ribozyme in solution studied by small-angle X-ray scattering.
Structure. 2008 Sep 10;16(9):1357-67. doi: 10.1016/j.str.2008.07.007.
5
Structural insights into amino acid binding and gene control by a lysine riboswitch.
Nature. 2008 Oct 30;455(7217):1263-7. doi: 10.1038/nature07326. Epub 2008 Sep 10.
6
Analysis of branched nucleic acid structure using comparative gel electrophoresis.
Q Rev Biophys. 2008 Feb;41(1):1-39. doi: 10.1017/S0033583508004678.
7
Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11176-81. doi: 10.1073/pnas.0801707105. Epub 2008 Aug 1.
8
A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA.
Nature. 2008 Aug 14;454(7206):899-902. doi: 10.1038/nature07117. Epub 2008 Jul 9.
9
The structure of cyanine 5 terminally attached to double-stranded DNA: implications for FRET studies.
Biochemistry. 2008 Jul 29;47(30):7857-62. doi: 10.1021/bi800773f. Epub 2008 Jul 3.
10
Crystal structure of the lysine riboswitch regulatory mRNA element.
J Biol Chem. 2008 Aug 15;283(33):22347-51. doi: 10.1074/jbc.C800120200. Epub 2008 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验