Suppr超能文献

相似文献

2
Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney.
Am J Physiol Renal Physiol. 2010 Feb;298(2):F416-20. doi: 10.1152/ajprenal.00229.2009. Epub 2009 Nov 18.
3
NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes.
Am J Physiol Regul Integr Comp Physiol. 2012 Jun 15;302(12):R1443-9. doi: 10.1152/ajpregu.00502.2011. Epub 2012 May 2.
4
Apocynin improves erectile function in diabetic rats through regulation of NADPH oxidase expression.
J Sex Med. 2012 Dec;9(12):3041-50. doi: 10.1111/j.1743-6109.2012.02960.x. Epub 2012 Oct 22.
6
Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress.
Am J Physiol Renal Physiol. 2010 Aug;299(2):F380-6. doi: 10.1152/ajprenal.00175.2010. Epub 2010 Jun 2.
8
Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB.
Kidney Int. 2002 Jan;61(1):186-94. doi: 10.1046/j.1523-1755.2002.00123.x.
9
Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes.
Am J Physiol Renal Physiol. 2000 Sep;279(3):F573-83. doi: 10.1152/ajprenal.2000.279.3.F573.

引用本文的文献

1
The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease.
J Nephrol. 2025 Jan;38(1):37-47. doi: 10.1007/s40620-024-02152-x. Epub 2024 Dec 8.
2
Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3.
Cancers (Basel). 2021 Dec 6;13(23):6142. doi: 10.3390/cancers13236142.
4
MicroRNA-137-3p Protects PC12 Cells Against Oxidative Stress by Downregulation of Calpain-2 and nNOS.
Cell Mol Neurobiol. 2021 Aug;41(6):1373-1387. doi: 10.1007/s10571-020-00908-0. Epub 2020 Jun 27.
9
Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension.
Clin Exp Pharmacol Physiol. 2013 Feb;40(2):123-37. doi: 10.1111/1440-1681.12034.
10
Redox regulation of stem/progenitor cells and bone marrow niche.
Free Radic Biol Med. 2013 Jan;54:26-39. doi: 10.1016/j.freeradbiomed.2012.10.532. Epub 2012 Oct 17.

本文引用的文献

1
Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney.
Am J Physiol Renal Physiol. 2010 Feb;298(2):F416-20. doi: 10.1152/ajprenal.00229.2009. Epub 2009 Nov 18.
2
Nitric oxide and kidney oxygenation.
Curr Opin Nephrol Hypertens. 2009 Jan;18(1):68-73. doi: 10.1097/MNH.0b013e32831c4cdf.
3
Hypoxia and hypoxia-inducible factor in renal disease.
Nephron Exp Nephrol. 2008;110(1):e1-7. doi: 10.1159/000148256. Epub 2008 Jul 30.
4
Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy.
Nat Clin Pract Nephrol. 2008 Apr;4(4):216-26. doi: 10.1038/ncpneph0757. Epub 2008 Feb 12.
5
Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability.
Am J Physiol Renal Physiol. 2008 Jan;294(1):F30-7. doi: 10.1152/ajprenal.00166.2007. Epub 2007 Oct 17.
6
Suppressing renal NADPH oxidase to treat diabetic nephropathy.
Expert Opin Ther Targets. 2007 Aug;11(8):1011-8. doi: 10.1517/14728222.11.8.1011.
8
Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy.
Clin Exp Pharmacol Physiol. 2006 Oct;33(10):997-1001. doi: 10.1111/j.1440-1681.2006.04473.x.
9
Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
J Am Soc Nephrol. 2006 Jan;17(1):17-25. doi: 10.1681/ASN.2005070757. Epub 2005 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验