Department of Chemistry, New York University, New York, New York 10003, USA.
J Am Chem Soc. 2010 Jul 21;132(28):9826-32. doi: 10.1021/ja103062g.
Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the energetic destabilization of (p-H(2))(2)@C(60). For these reasons, the T-R ZPE has to be calculated accurately and taken into account for reliable theoretical predictions regarding the stability of the endohedral fullerene complexes with hydrogen molecules and their maximum H(2) content.
最近对 C(70)及其开笼衍生物与一个和两个 H(2)分子的笼内复合物的综合合成,为实验和理论研究具有多个氢分子限制在纳米级腔内的系统的独特动力学、光谱和其他性质开辟了道路。在这里,我们报告了对 H(2)分子在 C(70)和 C(60)中耦合平移和旋转运动的严格理论研究,这些运动具有高度的量子力学性质。进行了扩散蒙特卡罗 (DMC) 计算,用于模拟多达三个包裹在 C(70)中的 para-H(2)(p-H(2))分子和一个和两个 p-H(2)分子在 C(60)内。这些计算提供了对纳米限制的 p-H(2)分子的基态性质、能量学和翻译-旋转 (T-R) 零点能 (ZPE) 以及两个 p-H(2)分子在 C(70)腔中的空间分布的定量描述。当第三个 H(2)分子被添加时,在 C(70)中,一个和两个 H(2)分子的分子间势能表面 (PES) 上的全局最小能量为负,但具有很高的正值,这意味着在 C(70)内最多只能稳定两个 H(2)分子。根据同样的标准,在 C(60)的情况下,只有具有一个 H(2)分子的内笼复合物在能量上是稳定的。我们的结果与以下事实一致:最近都制备了 (H(2))(n)@C(70)(n=1,2) 和 H(2)@C(60),但不是 (H(2))(3)@C(70)或 (H(2))(2)@C(60)。从 DMC 计算得出的耦合 T-R 运动的 ZPE 随笼内 p-H(2)分子的数量迅速增长,并且是分子间 PES 势阱深度的重要组成部分,在 p-H(2)@C(70)的情况下为 11%,在(p-H(2))(2)@C(70)的情况下为 52%。因此,T-R ZPE 代表了封装的 H(2)分子的能量学的主要组成部分。包含 ZPE 几乎将 (p-H(2))(3)@C(70)的不稳定性增加一倍,并将 (p-H(2))(2)@C(60)的能量不稳定性增加 66%。由于这些原因,必须准确计算 T-R ZPE 并将其考虑在内,以进行关于具有氢分子的内笼富勒烯复合物的稳定性及其最大 H(2)含量的可靠理论预测。