Plant Science Institute, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
BMC Plant Biol. 2010 Jun 28;10:133. doi: 10.1186/1471-2229-10-133.
Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin.
Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx) share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin.The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ.The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx) are of common origin. Besides a less related cysteine-type GPx, Chlamydomonas encodes two selenocysteine-type GPx. The latter were lost prior or during streptophyte evolution.
Throughout plant evolution, there was a strong selective pressure on maintaining the activity of all three investigated types of peroxidases in chloroplasts. APx evolved from a gene, which dates back to times before differentiation of chlorobionts into chlorophytes and streptophytes, while Prx and presumably also GPx gene patterns may have evolved independently in the streptophyte and chlorophyte branches.
需氧光合作用伴随着活性氧(ROS)的形成,ROS 会破坏蛋白质、脂质、DNA,并最终限制植物产量。叶绿体抗氧化系统的酶仅由核编码。在进化过程中,质体和线粒体基因被内共生后转移到细胞核,适应真核生物基因表达和翻译后蛋白质靶向,并补充了真核生物起源的基因。
在此,筛选了绿藻莱茵衣藻、苔藓拟南芥、石松卷柏和种子植物拟南芥的基因组,以寻找编码叶绿体过氧化物酶的 ORF。对鉴定出的基因进行氨基酸序列相似性和基因结构比较。基质和类囊体结合的抗坏血酸过氧化物酶(APx)具有共同的剪接位点,表明它们是从共同的祖先基因进化而来的。与大多数维管植物不同,我们的结果预测叶绿体 APx 活性仅在衣藻中局限于基质,而在拟南芥中局限于类囊体。苔藓基因起源于反转录转座子。叶绿体 2CP 基因的外显子-内含子结构在绿藻和石松植物之间存在差异,表明它们是独立进化的。根据氨基酸序列特征,只有衣藻 2CP 的 A 异构体可能在功能上与石松植物 2CP 等效,而表达较弱的 B 和 C 异构体则具有藻类特有的表面和氨基酸序列特征。研究物种之间的叶绿体 PrxII 氨基酸序列广泛保守。在所分析的石松植物中,基因未剪接,但在衣藻中积累了 4 个内含子。保守的剪接位点也表明蓝藻 PrxQ 具有共同的起源。谷胱甘肽过氧化物酶(GPx)的剪接位点相似,表明它们也具有共同的起源。除了一种亲缘关系较远的半胱氨酸型 GPx 外,衣藻还编码两种硒代半胱氨酸型 GPx。后者在石松植物和绿藻植物进化之前或期间丢失。
在整个植物进化过程中,对维持叶绿体中三种过氧化物酶活性的选择压力很强。APx 是从一个基因进化而来的,这个基因可以追溯到蓝藻和石松植物分化之前的时期,而 Prx 和可能还有 GPx 基因模式可能在石松植物和绿藻植物分支中独立进化。