文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于斜率的随机共振:噪声如何使相位型神经元编码慢信号。

Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals.

机构信息

Center for Neural Science, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2010 Jun 24;6(6):e1000825. doi: 10.1371/journal.pcbi.1000825.


DOI:10.1371/journal.pcbi.1000825
PMID:20585612
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2891698/
Abstract

Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise, phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR) like effect differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system, phasic models are most sensitive to the signal's rising and falling phases where the slopes are steep. This finding is consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular biological mechanism.

摘要

相位放电神经元的基本特性通常在无噪声条件下进行描述。在没有噪声的情况下,相位神经元表现出第三类兴奋性,即对稳定的电流注入没有重复放电。对于时变输入,相位神经元是带通滤波器或斜率检测器,因为它们对仅包含低频或浅斜率的输入没有响应。然而,我们表明,在噪声条件下,相位神经元模型的响应特性会发生明显改变。噪声使相位模型能够对关联确定性模型的响应范围之外的低频输入进行编码。有趣的是,这种看似随机共振(SR)的效应与尖峰系统的经典 SR 行为在信噪比和时间响应模式上有很大的不同。与经典 SR 系统中典型的情况相反,相位模型对信号的上升和下降阶段最敏感,而不是对亚阈值信号的峰值最敏感,在这些阶段斜率很陡。这一发现与这样一个事实是一致的,即从幅度方面来看,不存在绝对输入阈值;相反,响应阈值更恰当地定义为刺激斜率/频率。我们将相位模型用噪声对低频信号的编码称为基于斜率的 SR,因为噪声可以降低或减小斜坡刺激的斜率阈值。我们在这里展示了在存在缓慢变化噪声的情况下,三个具有第三类兴奋性的机制模型中类似的行为,并提出基于斜率的 SR 是与一般相位特性相关的基本行为,而不是与特定的生物机制相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/ea693e7ca0c9/pcbi.1000825.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/21534a111c88/pcbi.1000825.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/2bb59959b79a/pcbi.1000825.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/8bfbf897d655/pcbi.1000825.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/d80fa431f935/pcbi.1000825.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/2f22a9699c96/pcbi.1000825.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/d7569c3f5013/pcbi.1000825.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/de85c7aee59a/pcbi.1000825.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/0070c30f2d59/pcbi.1000825.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/3c322f9788de/pcbi.1000825.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/662d33e00dd6/pcbi.1000825.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/ea693e7ca0c9/pcbi.1000825.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/21534a111c88/pcbi.1000825.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/2bb59959b79a/pcbi.1000825.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/8bfbf897d655/pcbi.1000825.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/d80fa431f935/pcbi.1000825.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/2f22a9699c96/pcbi.1000825.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/d7569c3f5013/pcbi.1000825.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/de85c7aee59a/pcbi.1000825.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/0070c30f2d59/pcbi.1000825.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/3c322f9788de/pcbi.1000825.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/662d33e00dd6/pcbi.1000825.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045a/2891698/ea693e7ca0c9/pcbi.1000825.g011.jpg

相似文献

[1]
Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals.

PLoS Comput Biol. 2010-6-24

[2]
Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.

J Neurophysiol. 2009-10-7

[3]
Noise-enhanced coding in phasic neuron spike trains.

PLoS One. 2017-5-4

[4]
Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013-11

[5]
Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons.

Bull Math Biol. 2003-7

[6]
High-Frequency Resonance in the Gerbil Medial Superior Olive.

PLoS Comput Biol. 2016-11-10

[7]
Novel class of neural stochastic resonance and error-free information transfer.

Phys Rev Lett. 2008-3-21

[8]
A neuron model of stochastic resonance using rectangular pulse trains.

J Comput Neurosci. 2015-2

[9]
Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus.

J Neurophysiol. 2001-8

[10]
The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability.

Biol Cybern. 2022-4

引用本文的文献

[1]
Effect of burst spikes on linear and nonlinear signal transmission in spiking neurons.

J Comput Neurosci. 2025-3

[2]
Detecting a periodic signal by a population of spiking neurons in the weakly nonlinear response regime.

Eur Phys J E Soft Matter. 2023-11-6

[3]
Binaural Processing Deficits Due to Synaptopathy and Myelin Defects.

Front Neural Circuits. 2022

[4]
The Perception of Ramped Pulse Shapes in Cochlear Implant Users.

Trends Hear. 2021

[5]
Excitability and Threshold Mechanism for Enhanced Neuronal Response Induced by Inhibition Preceding Excitation.

Neural Plast. 2021-1-18

[6]
Different dynamical behaviors induced by slow excitatory feedback for type II and III excitabilities.

Sci Rep. 2020-2-27

[7]
A practical guide to methodological considerations in the controllability of structural brain networks.

J Neural Eng. 2020-4-9

[8]
Noise-enhanced coding in phasic neuron spike trains.

PLoS One. 2017-5-4

[9]
Phasic Firing and Coincidence Detection by Subthreshold Negative Feedback: Divisive or Subtractive or, Better, Both.

Front Comput Neurosci. 2017-2-2

[10]
Coding Properties of Three Intrinsically Distinct Retinal Ganglion Cells under Periodic Stimuli: A Computational Study.

Front Comput Neurosci. 2016-9-23

本文引用的文献

[1]
Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.

J Neurophysiol. 2009-10-7

[2]
What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology.

PLoS Comput Biol. 2009-5

[3]
Wide-ranging frequency preferences of auditory midbrain neurons: Roles of membrane time constant and synaptic properties.

Eur J Neurosci. 2009-7

[4]
Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons.

PLoS Comput Biol. 2009-4

[5]
Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons.

J Comput Neurosci. 2009-10

[6]
Models of brainstem responses to bilateral electrical stimulation.

J Assoc Res Otolaryngol. 2009-3

[7]
Biophysical basis for three distinct dynamical mechanisms of action potential initiation.

PLoS Comput Biol. 2008-10

[8]
A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons.

J R Soc Interface. 2008-12-6

[9]
Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space.

Neural Comput. 2008-5

[10]
Subthreshold K+ channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model.

J Neurophysiol. 2008-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索