Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy.
J Chem Phys. 2010 Jun 28;132(24):244106. doi: 10.1063/1.3447387.
The computational scheme for the evaluation of the second-order electric susceptibility tensor in periodic systems, recently implemented in the CRYSTAL code within the coupled perturbed Hartree-Fock (HF) scheme, has been extended to local-density, gradient-corrected, and hybrid density functionals (coupled-perturbed Kohn-Sham) and applied to a set of cubic and hexagonal semiconductors. The method is based on the use of local basis sets and analytical calculation of derivatives. The high-frequency dielectric tensor (epsilon(infinity)) and second-harmonic generation susceptibility (d) have been calculated with hybrid functionals (PBE0 and B3LYP) and the HF approximation. Results are compared with the values of epsilon(infinity) and d obtained from previous plane-wave local density approximation or generalized gradient approximation calculations and from experiment. The agreement is in general good, although comparison with experiment is affected by a certain degree of uncertainty implicit in the experimental techniques.
该计算方案用于评估周期性系统中的二阶电感应张量,最近在 CRYSTAL 代码中通过耦合微扰 Hartree-Fock (HF) 方案实现,并扩展到局部密度、梯度校正和混合密度泛函(耦合微扰 Kohn-Sham),并应用于一组立方和六方半导体。该方法基于使用局部基组和导数的解析计算。高频介电张量(epsilon(infinity))和二次谐波产生率(d)已使用混合泛函(PBE0 和 B3LYP)和 HF 近似值进行计算。结果与之前的平面波局域密度近似或广义梯度近似计算和实验得到的 epsilon(infinity)和 d 值进行了比较。总的来说,结果是一致的,尽管与实验的比较受到实验技术中隐含的一定程度不确定性的影响。