Suppr超能文献

周期性驱动过阻尼摆的稳定性及其对半导体超晶格和约瑟夫森结物理的意义。

Stability properties of periodically driven overdamped pendula and their implications to physics of semiconductor superlattices and Josephson junctions.

机构信息

Department of Physical Sciences, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland.

出版信息

Chaos. 2010 Jun;20(2):023116. doi: 10.1063/1.3382087.

Abstract

We consider the first order differential equation with a sinusoidal nonlinearity and periodic time dependence, that is, the periodically driven overdamped pendulum. The problem is studied in the case that the explicit time dependence has symmetries common to pure ac-driven systems. The only bifurcation that exists in the system is a degenerate pitchfork bifurcation, which describes an exchange of stability between two symmetric nonlinear modes. Using a type of Prüfer transform to a pair of linear differential equations, we derive an approximate condition of the bifurcation. This approximation is in very good agreement with our numerical data. In particular, it works well in the limit of large drive amplitudes and low external frequencies. We demonstrate the usefulness of the theory applying it to the models of pure ac-driven semiconductor superlattices and Josephson junctions. We show how the knowledge of bifurcations in the overdamped pendulum model can be utilized to describe the effects of rectification and amplification of electric fields in these microstructures.

摘要

我们研究了带有正弦非线性和周期性时间依赖的一阶微分方程,即周期性驱动的过阻尼摆。在显式时间依赖具有纯交流驱动系统共有的对称性的情况下研究了该问题。系统中仅存在退化叉式分岔,它描述了两个对称非线性模式之间稳定性的交换。通过对一对线性微分方程进行一种普吕弗变换,我们推导出了分岔的近似条件。该近似与我们的数值数据非常吻合。特别是,它在大驱动幅度和低外部频率的极限下效果很好。我们应用该理论来展示了纯交流驱动半导体超晶格和约瑟夫森结模型的有效性。我们展示了过阻尼摆模型中的分岔知识如何用于描述这些微结构中电场的整流和放大效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验