Suppr超能文献

细胞色素 P450 3A(CYP3A)以及药物转运蛋白 P-糖蛋白(MDR1/ABCB1)和多药耐药相关蛋白 2(MRP2/ABCC2)对洛匹那韦药代动力学的影响。

Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir.

机构信息

Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.

出版信息

Br J Pharmacol. 2010 Jul;160(5):1224-33. doi: 10.1111/j.1476-5381.2010.00759.x.

Abstract

BACKGROUND AND PURPOSE

Lopinavir is extensively metabolized by cytochrome P450 3A (CYP3A) and is considered to be a substrate for the drug transporters ABCB1 (P-glycoprotein) and ABCC2 (MRP2). Here, we have assessed the individual and combined effects of CYP3A, ABCB1 and ABCC2 on the pharmacokinetics of lopinavir and the relative importance of intestinal and hepatic metabolism. We also evaluated whether ritonavir increases lopinavir oral bioavailability by inhibition of CYP3A, ABCB1 and/or ABCC2.

EXPERIMENTAL APPROACH

Lopinavir transport was measured in Madin-Darby canine kidney cells expressing ABCB1 or ABCC2. Oral lopinavir kinetics (+/- ritonavir) was studied in mice with genetic deletions of Cyp3a, Abcb1a/b and/or Abcc2, or in transgenic mice expressing human CYP3A4 exclusively in the liver and/or intestine.

KEY RESULTS

Lopinavir was transported by ABCB1 but not by ABCC2 in vitro. Lopinavir area under the plasma concentration - time curve (AUC)(oral) was increased in Abcb1a/b(-/-) mice (approximately ninefold vs. wild-type) but not in Abcc2(-/-) mice. Increased lopinavir AUC(oral) (>2000-fold) was observed in cytochrome P450 3A knockout (Cyp3a(-/-)) mice compared with wild-type mice. No difference in AUC(oral) between Cyp3a(-/-) and Cyp3a/Abcb1a/b/Abcc2(-/-) mice was observed. CYP3A4 activity in intestine or liver, separately, reduced lopinavir AUC(oral) (>100-fold), compared with Cyp3a(-/-) mice. Ritonavir markedly increased lopinavir AUC(oral) in all CYP3A-containing mouse strains.

CONCLUSIONS AND IMPLICATIONS

CYP3A was the major determinant of lopinavir pharmacokinetics, far more than Abcb1a/b. Both intestinal and hepatic CYP3A activity contributed importantly to low oral bioavailability of lopinavir. Ritonavir increased lopinavir bioavailability primarily by inhibiting CYP3A. Effects of Abcb1a/b were only detectable in the presence of CYP3A, suggesting saturation of Abcb1a/b in the absence of CYP3A activity.

摘要

背景与目的

洛匹那韦主要经细胞色素 P450 3A(CYP3A)代谢,被认为是药物转运体 ABCB1(P-糖蛋白)和 ABCC2(MRP2)的底物。在此,我们评估了 CYP3A、ABCB1 和 ABCC2 对洛匹那韦药代动力学的个体和联合作用,以及肠和肝代谢的相对重要性。我们还评估了利托那韦是否通过抑制 CYP3A、ABCB1 和/或 ABCC2 来增加洛匹那韦的口服生物利用度。

实验方法

在表达 ABCB1 或 ABCC2 的 Madin-Darby 犬肾细胞中测量洛匹那韦的转运。在 CYP3a、Abcb1a/b 和/或 Abcc2 基因缺失的小鼠或在肝脏和/或肠道中特异性表达人 CYP3A4 的转基因小鼠中研究了洛匹那韦(加/或不加利托那韦)的口服动力学。

主要结果

洛匹那韦在体外由 ABCB1 转运但不由 ABCC2 转运。与野生型小鼠相比,Abcb1a/b(-/-) 小鼠的洛匹那韦血药浓度-时间曲线下面积(AUC)(口服)增加了约九倍,但 Abcc2(-/-) 小鼠则没有。与野生型小鼠相比,细胞色素 P450 3A 敲除(Cyp3a(-/-))小鼠的洛匹那韦 AUC(口服)增加了>2000 倍。与 Cyp3a(-/-) 小鼠相比,Cyp3a/Abcb1a/b/Abcc2(-/-) 小鼠的 AUC(口服)无差异。单独的肠或肝 CYP3A 活性使洛匹那韦 AUC(口服)降低了>100 倍,与 Cyp3a(-/-) 小鼠相比。在所有含有 CYP3A 的小鼠品系中,利托那韦均显著增加了洛匹那韦的 AUC(口服)。

结论和意义

CYP3A 是洛匹那韦药代动力学的主要决定因素,远远超过 Abcb1a/b。肠和肝 CYP3A 活性均对洛匹那韦的低口服生物利用度有重要贡献。利托那韦通过抑制 CYP3A 增加了洛匹那韦的生物利用度。只有在存在 CYP3A 的情况下才能检测到 Abcb1a/b 的作用,这表明在没有 CYP3A 活性的情况下 Abcb1a/b 被饱和。

相似文献

3
P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel.
Int J Cancer. 2013 May 15;132(10):2439-47. doi: 10.1002/ijc.27912. Epub 2012 Nov 14.
5
9
P-Glycoprotein (ABCB1/MDR1) Controls Brain Penetration and Intestinal Disposition of the PARP1/2 Inhibitor Niraparib.
Mol Pharm. 2021 Dec 6;18(12):4371-4384. doi: 10.1021/acs.molpharmaceut.1c00553. Epub 2021 Nov 3.

引用本文的文献

1
CYP3A-Mediated Carbon-Carbon Bond Cleavages in Drug Metabolism.
Biomolecules. 2024 Sep 5;14(9):1125. doi: 10.3390/biom14091125.
2
Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients.
Acta Pharm Sin B. 2023 Jan;13(1):1-28. doi: 10.1016/j.apsb.2022.08.018. Epub 2022 Aug 28.
3
4
Branched copolymer-stabilised nanoemulsions as new candidate oral drug delivery systems.
RSC Adv. 2018 Apr 9;8(23):12984-12991. doi: 10.1039/c8ra01944d. eCollection 2018 Apr 3.
8
Interactions between etonogestrel-releasing contraceptive implant and 3 antiretroviral regimens.
Contraception. 2022 Jan;105:67-74. doi: 10.1016/j.contraception.2021.08.006. Epub 2021 Aug 15.
9
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics.
Int J Nanomedicine. 2021 Jul 22;16:4959-4984. doi: 10.2147/IJN.S315705. eCollection 2021.
10
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment.
Biomed Pharmacother. 2021 Jul;139:111642. doi: 10.1016/j.biopha.2021.111642. Epub 2021 Apr 27.

本文引用的文献

1
Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity.
Cancer Res. 2009 Dec 1;69(23):8996-9002. doi: 10.1158/0008-5472.CAN-09-2915. Epub 2009 Nov 17.
2
Guide to Receptors and Channels (GRAC), 4th Edition.
Br J Pharmacol. 2009 Nov;158 Suppl 1(Suppl 1):S1-254. doi: 10.1111/j.1476-5381.2009.00499.x.
3
Possible antiretroviral therapy-warfarin drug interaction.
Pharmacotherapy. 2008 Jul;28(7):945-9. doi: 10.1592/phco.28.7.945.
4
Toxic lopinavir concentrations in an HIV-1 infected patient taking herbal medications.
AIDS. 2008 Jun 19;22(10):1243-4. doi: 10.1097/QAD.0b013e32830261f4.
5
In silico methods for unraveling the mechanistic complexities of intestinal absorption: metabolism-efflux transport interactions.
Drug Metab Dispos. 2008 Jul;36(7):1414-24. doi: 10.1124/dmd.107.020164. Epub 2008 Apr 24.
6
Drug interactions between HIV protease inhibitors and acid-reducing agents.
Clin Pharmacokinet. 2008;47(2):75-89. doi: 10.2165/00003088-200847020-00001.
7
Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers.
J Acquir Immune Defic Syndr. 2008 Apr 15;47(5):570-8. doi: 10.1097/QAI.0b013e318160a542.
9
10
Gut instincts: CYP3A4 and intestinal drug metabolism.
J Clin Invest. 2007 Nov;117(11):3173-6. doi: 10.1172/JCI34007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验