Suppr超能文献

薄肌丝和厚肌丝破坏对斑马鱼平滑肌调节蛋白的差异影响。

Differential effects of thin and thick filament disruption on zebrafish smooth muscle regulatory proteins.

机构信息

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

出版信息

Neurogastroenterol Motil. 2010 Oct;22(10):1100-e285. doi: 10.1111/j.1365-2982.2010.01545.x. Epub 2010 Jun 28.

Abstract

BACKGROUND

The smooth muscle actin binding proteins Caldesmon and Tropomyosin (Tm) promote thin filament assembly by stabilizing actin polymerization, however, whether filament assembly affects either the stability or activation of these and other smooth muscle regulatory proteins is not known.

METHODS

Measurement of smooth muscle regulatory protein levels in wild type zebrafish larvae following antisense knockdown of smooth muscle actin (Acta2) and myosin heavy chain (Myh11) proteins, and in colourless mutants that lack enteric nerves. Comparison of intestinal peristalsis in wild type and colourless larvae.

KEY RESULTS

Knockdown of Acta2 led to reduced levels of phospho-Caldesmon and Tm. Total Caldesmon and phospho-myosin light chain (p-Mlc) levels were unaffected. Knockdown of Myh11 had no effect on the levels of either of these proteins. Phospho-Caldesmon and p-Mlc levels were markedly reduced in colourless mutants that have intestinal motility comparable with wild type larvae.

CONCLUSIONS & INFERENCES: These in vivo findings provide new information regarding the activation and stability of smooth muscle regulatory proteins in zebrafish larvae and their role in intestinal peristalsis in this model organism.

摘要

背景

平滑肌肌球蛋白结合蛋白钙调蛋白和原肌球蛋白(Tm)通过稳定肌动蛋白聚合来促进细肌丝组装,然而,细丝组装是否会影响这些和其他平滑肌调节蛋白的稳定性或激活尚不清楚。

方法

在斑马鱼幼虫中反义敲低平滑肌肌动蛋白(Acta2)和肌球蛋白重链(Myh11)蛋白后,以及在缺乏肠神经的无色突变体中,测量平滑肌调节蛋白的水平。比较野生型和无色幼虫的肠道蠕动。

主要结果

Acta2 的敲低导致磷酸钙调蛋白和 Tm 的水平降低。钙调蛋白总量和磷酸肌球蛋白轻链(p-Mlc)水平不受影响。Myh11 的敲低对这两种蛋白的水平均无影响。无色突变体中磷酸钙调蛋白和 p-Mlc 的水平明显降低,其肠道蠕动与野生型幼虫相当。

结论和推论

这些体内发现为斑马鱼幼虫中平滑肌调节蛋白的激活和稳定性及其在该模型生物中肠道蠕动中的作用提供了新的信息。

相似文献

1
Differential effects of thin and thick filament disruption on zebrafish smooth muscle regulatory proteins.
Neurogastroenterol Motil. 2010 Oct;22(10):1100-e285. doi: 10.1111/j.1365-2982.2010.01545.x. Epub 2010 Jun 28.
2
Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine.
Neurogastroenterol Motil. 2012 Mar;24(3):288-99. doi: 10.1111/j.1365-2982.2011.01844.x.
3
Role of thin-filament regulatory proteins in relaxation of colonic smooth muscle contraction.
Am J Physiol Gastrointest Liver Physiol. 2009 Nov;297(5):G958-66. doi: 10.1152/ajpgi.00201.2009.
4
Over expression of smooth muscle thin filament associated proteins in the bladder wall of diabetics.
J Urol. 2005 Jul;174(1):360-4. doi: 10.1097/01.ju.0000161602.18671.c7.
5
Regulatory mechanism of smooth muscle contraction studied with gelsolin-treated strips of taenia caeci in guinea pig.
Am J Physiol Cell Physiol. 2009 May;296(5):C1024-33. doi: 10.1152/ajpcell.00565.2008. Epub 2009 Feb 11.
6
Role of caldesmon in the Ca2+ regulation of smooth muscle thin filaments: evidence for a cooperative switching mechanism.
J Biol Chem. 2008 Jan 4;283(1):47-56. doi: 10.1074/jbc.M706771200. Epub 2007 Oct 12.
7
Caldesmon binds to smooth muscle myosin and myosin rod and crosslinks thick filaments to actin filaments.
J Muscle Res Cell Motil. 1992 Apr;13(2):206-18. doi: 10.1007/BF01874158.
10
In vitro motility analysis of smooth muscle caldesmon control of actin-tropomyosin filament movement.
J Biol Chem. 1995 Aug 25;270(34):19688-93. doi: 10.1074/jbc.270.34.19688.

引用本文的文献

1
The enteric nervous system promotes intestinal health by constraining microbiota composition.
PLoS Biol. 2017 Feb 16;15(2):e2000689. doi: 10.1371/journal.pbio.2000689. eCollection 2017 Feb.
2
A compendium of developmental gene expression in Lake Malawi cichlid fishes.
BMC Dev Biol. 2017 Feb 3;17(1):3. doi: 10.1186/s12861-017-0146-0.
4
Smooth muscle tension induces invasive remodeling of the zebrafish intestine.
PLoS Biol. 2012;10(9):e1001386. doi: 10.1371/journal.pbio.1001386. Epub 2012 Sep 4.
5
Ultra-structural identification of interstitial cells of Cajal in the zebrafish Danio rerio.
Cell Tissue Res. 2012 Aug;349(2):483-91. doi: 10.1007/s00441-012-1434-4. Epub 2012 May 25.
6
Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine.
Neurogastroenterol Motil. 2012 Mar;24(3):288-99. doi: 10.1111/j.1365-2982.2011.01844.x.
7
Development of the zebrafish enteric nervous system.
Methods Cell Biol. 2011;101:143-60. doi: 10.1016/B978-0-12-387036-0.00006-2.

本文引用的文献

1
Nonmuscle myosin is regulated during smooth muscle contraction.
Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H191-9. doi: 10.1152/ajpheart.00132.2009. Epub 2009 May 8.
2
Signaling processes for initiating smooth muscle contraction upon neural stimulation.
J Biol Chem. 2009 Jun 5;284(23):15541-8. doi: 10.1074/jbc.M900888200. Epub 2009 Apr 6.
3
Role of tropomyosin in the regulation of contraction in smooth muscle.
Adv Exp Med Biol. 2008;644:110-23. doi: 10.1007/978-0-387-85766-4_9.
5
Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice.
Gastroenterology. 2008 Aug;135(2):610-20. doi: 10.1053/j.gastro.2008.05.032. Epub 2008 May 15.
6
Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo.
Am J Physiol Cell Physiol. 2008 Aug;295(2):C358-64. doi: 10.1152/ajpcell.90645.2007. Epub 2008 Jun 4.
8
Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut.
J Comp Neurol. 2008 Jun 10;508(5):756-70. doi: 10.1002/cne.21705.
9
Role of caldesmon in the Ca2+ regulation of smooth muscle thin filaments: evidence for a cooperative switching mechanism.
J Biol Chem. 2008 Jan 4;283(1):47-56. doi: 10.1074/jbc.M706771200. Epub 2007 Oct 12.
10
Spatiotemporal expression of smooth muscle markers in developing zebrafish gut.
Dev Dyn. 2007 Jun;236(6):1623-32. doi: 10.1002/dvdy.21165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验