Suppr超能文献

考虑材料粘性时 AT 切石英晶体谐振器的电学参数计算。

The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.

机构信息

School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China.

出版信息

Ultrasonics. 2011 Jan;51(1):65-70. doi: 10.1016/j.ultras.2010.05.009. Epub 2010 Jun 4.

Abstract

Electrical parameters like resistance and quality factor of a quartz crystal resonator cannot be determined through vibration analysis without considering the presence of material dissipation. In this study, we use the first-order Mindlin plate equations of piezoelectric plates for thickness-shear vibrations of a simple resonator model with partial electrodes. We derive the expressions of electrical parameters with emphasis on the resistance that is related to the imaginary part of complex elastic constants, or the viscosity, of quartz crystal. Since all electrical parameters are frequency dependent, this procedure provides the chance to study the frequency behavior of crystal resonators with a direct formulation. We understand that the electrical parameters are strongly affected by the manufacturing process, with the plating techniques in particular, but the theoretical approach we presented here will be the first step for the precise estimation of such parameters and their further applications in the analysis of nonlinear behavior of resonators. We calculated the parameters from our simple resonator model of AT-cut quartz crystal with the first-order Mindlin plate theory to demonstrate the procedure and show that the numerical results are consistent with earlier measurements.

摘要

如果不考虑材料耗散,通过振动分析无法确定石英晶体谐振器的电阻和品质因数等电气参数。在这项研究中,我们使用压电板的一阶 Mindlin 板方程来分析具有部分电极的简单谐振器模型的厚度剪切振动。我们推导出了电气参数的表达式,重点是与石英晶体的复弹性常数的虚部或粘性有关的电阻。由于所有电气参数都是频率相关的,因此该过程提供了通过直接公式研究晶体谐振器频率行为的机会。我们理解,制造过程会强烈影响电气参数,尤其是电镀技术,但我们在这里提出的理论方法将是精确估计这些参数及其在谐振器非线性行为分析中的进一步应用的第一步。我们使用一阶 Mindlin 板理论从 AT 切石英晶体的简单谐振器模型计算了这些参数,以演示该过程,并表明数值结果与早期测量结果一致。

相似文献

1
The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.
Ultrasonics. 2011 Jan;51(1):65-70. doi: 10.1016/j.ultras.2010.05.009. Epub 2010 Jun 4.
2
The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e869-73. doi: 10.1016/j.ultras.2006.05.033. Epub 2006 Jun 9.
3
An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2371-80. doi: 10.1109/TUFFC.2013.6644740.
4
Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.
Ultrasonics. 2016 Feb;65:338-44. doi: 10.1016/j.ultras.2015.09.008. Epub 2015 Sep 25.
5
An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jan;59(1):30-9. doi: 10.1109/TUFFC.2012.2153.
7
Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Aug;57(8):1831-9. doi: 10.1109/TUFFC.2010.1622.
8
Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
Ultrasonics. 2017 Jan;73:96-106. doi: 10.1016/j.ultras.2016.09.002. Epub 2016 Sep 4.
9
The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(4):1042-6. doi: 10.1109/58.775672.
10
Effects of air resistance on AT-cut quartz thickness-shear resonators.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):402-7. doi: 10.1109/TUFFC.2013.2576.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验