Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
Langmuir. 2010 Aug 3;26(15):12722-32. doi: 10.1021/la1017906.
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
淀粉样蛋白-β (Abeta) 肽在细胞膜上的聚集是导致阿尔茨海默病 (AD) 神经元细胞死亡的关键病理事件。我们提出了一系列分子对接和分子动力学模拟,以研究 Abeta 单体在自组装单层 (SAM) 上的构象动力学和吸附行为,与 Abeta 在体相溶液中的结构进行比较。选择两种不同的 Abeta 构象(即α-螺旋和β-发夹)作为初始结构来模拟不同的吸附状态,而使用具有不同疏水性和电荷分布的末端基团的四个 SAM 表面来研究表面化学对 Abeta 结构和吸附的影响。模拟结果表明,α-螺旋单体在所有 SAM 上都比β-发夹单体具有更高的结构稳定性,这表明 Abeta 单体在结合到表面时可能优先采用α-螺旋或无规结构。Abeta 单体在 SAM 上的结构稳定性和吸附行为源于 Abeta 与 SAM 之间以及 SAM 与界面水之间的竞争相互作用,这涉及 Abeta 的构象、SAM 的表面化学以及界面水的结构和动力学。Abeta 与 SAM 的相对净结合亲和力的顺序为 COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM,这突出了静电和疏水相互作用对驱动 Abeta 在 SAM 上吸附的重要性,但这两种相互作用对每个 Abeta-SAM 复合物的贡献不同。这项工作为理解 Abeta 在细胞膜上的结构和聚集提供了并行的见解。