Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, INSERM U696, CNRS, 91128 Palaiseau, France.
Lab Chip. 2010 Oct 7;10(19):2505-12. doi: 10.1039/c004390g. Epub 2010 Jul 6.
We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.
我们开发了一种微流控方法,通过在流动的微滴中快速改变氧分压来研究与镰状细胞贫血相关的红细胞镰状化。通过使用全氟碳 carrier 油作为氧的汇或源,水相中的氧水平可以通过与周围油的交换迅速达到平衡。这可以控制水相中的氧分压范围从 1kPa 到环境分压,即 21kPa。通过测量溶解在水相中的钌化合物的荧光寿命来表征氧交换的动力学。结果表明,气体交换主要发生在液滴形成过程中和形成后,时间在 0.1 到 0.5 秒之间,具体取决于液滴的直径和速度。通过控制脱氧来触发封装在液滴中的镰状红细胞内血红蛋白的聚合。使用偏光显微镜观察到这一过程,该方法基于通过正交偏振器的透射光强度产生了一种可靠的聚合检测标准。