Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
J Org Chem. 2010 Aug 6;75(15):5037-47. doi: 10.1021/jo100735s.
The one-electron reduction potentials of 116 important p- and o-quinones in DMSO and CH(3)CN were predicted for the first time by using the B3LYP/DZP++ method and the PCM cluster continuum model. The calculated gas-phase electron affinities and one-electron reduction potentials agree well with the available experimental observations, respectively. The study showed the one-electron reduction potentials of the 116 quinones range from -0.949 to 1.128 V in DMSO and from -0.904 to 0.971 V in CH(3)CN. The one-electron reduction potentials of p-quinones are generally smaller than those of the o-quinones by about 0.132 V. For quinones with aromatic properties, 2-substituted-1,4-naphthquinones have the largest one-electron reduction potentials, followed by substituted-1,4-anthraquinones and then by substituted-9,10-anthraquinones. The study also showed that the one-electron reduction potentials of quinones in DMSO are linearly dependent on the sum of the Hammett substituent parameters sigma(p): E(NHE)(p-Q/p-Q(-)) = 0.45Sigma sigma(p) - 0.194 (V) and E(NHE)(o-Q/o-Q(-)) = 0.45Sigma sigma(p) - 0.059 (V). Combined with the hydride affinities of quinones in the former paper [DeltaG(H)-(A)(p-Q) = -16.0Sigma sigma(p) - 70.5 (kcal/mol) and DeltaG(H)-(A)(o-Q) = -16.2Sigma sigma(p) - 81.5 (kcal/mol)] and the one-electron reduction potentials of quinones estimated in this work, we obtained the homolytic bond dissociation energies of the hydroquinone anions (QH(-)) and found that these thermodynamic parameters also have linear correlations against the sum of the Hammett substituent parameters sigma(p) if only the substituents have no larger electrostatic inductive force and no large steric hindrance: BDE(p-QH(-)) = 5.05Sigma sigma(p) + 63.18 (kcal/mol) and BDE(o-QH(-)) = 5.33Sigma sigma(p) + 71.30 (kcal/mol). Knowledge about the redox potentials of the quinones should be of great value for the understanding of the nature of chemical reactions of quinones, the designing of new electronic materials of quinones, and the examining of biological activities of quinones.
首次使用 B3LYP/DZP++ 方法和 PCM 簇连续体模型预测了 116 种重要的 p-和 o-醌在 DMSO 和 CH(3)CN 中的单电子还原电位。分别计算了气相电子亲和能和单电子还原电位,与实验观察值吻合良好。研究表明,116 种醌的单电子还原电位在 DMSO 中范围为-0.949 至 1.128 V,在 CH(3)CN 中范围为-0.904 至 0.971 V。p-醌的单电子还原电位一般比 o-醌小约 0.132 V。对于具有芳香性质的醌,2-取代-1,4-萘醌具有最大的单电子还原电位,其次是取代-1,4-蒽醌,然后是取代-9,10-蒽醌。研究还表明,醌在 DMSO 中的单电子还原电位与哈米特取代基参数 sigma(p)的总和呈线性关系:E(NHE)(p-Q/p-Q(-))=0.45Sigma sigma(p)-0.194(V)和 E(NHE)(o-Q/o-Q(-))=0.45Sigma sigma(p)-0.059(V)。结合前一篇论文中醌的亲核亲和力[DeltaG(H)-(A)(p-Q)=-16.0Sigma sigma(p)-70.5(kcal/mol)和 DeltaG(H)-(A)(o-Q)=-16.2Sigma sigma(p)-81.5(kcal/mol)]以及本文中估算的醌的单电子还原电位,我们得到了氢醌阴离子(QH(-))的均裂键解离能,并发现如果取代基没有较大的静电诱导力和较大的空间位阻,这些热力学参数也与哈米特取代基参数 sigma(p)的总和呈线性关系:BDE(p-QH(-))=5.05Sigma sigma(p)+63.18(kcal/mol)和 BDE(o-QH(-))=5.33Sigma sigma(p)+71.30(kcal/mol)。醌的氧化还原电位的知识对于理解醌的化学反应性质、醌的新型电子材料设计以及醌的生物活性检验都具有重要意义。