Miyaoka Robert S, Ling Tao, Lockhart Cate, Lewellen Tom K
University of Washington Department of Radiology, Seattle, WA 98195 USA (telephone: 206-543-2084,
IEEE Nucl Sci Symp Conf Rec (1997). 2007 Oct 26;2007:4314-4318. doi: 10.1109/NSSMIC.2007.4437070.
We report on methods to speed up the calibration process for a continuous miniature crystal element (cMiCE) detector. Our cMiCE detector is composed of a 50 mm by 50 mm by 8 mm thick LYSO crystal coupled to a 64-channel, flat panel photomultiplier tube (PMT). This detector is a lower cost alternative to designs that use finely pixilated individual crystal detectors. It achieves an average intrinsic spatial resolution of ~1.4 mm full width at half maximum (FWHM) over the useful face of the detector through the use of a statistics based positioning algorithm. A drawback to the design is the length of time it takes to calibrate the detector. We report on three methods to speed up this process. The first method is to use multiple point fluxes on the surface of the detector to calibrate different points of the detector from a single data acquisition. This will work as long as the point fluxes are appropriately spaced on the detector so that there is no overlap of signal. A special multi-source device that can create up to 16 point fluxes has been custom designed for this purpose. The second scheme is to characterize the detector with coarser sampling and use interpolation to create look up tables with the desired detector sampling (e.g., 0.25 mm). The intrinsic spatial resolution performance will be investigated for sampling intervals of 0.76 mm, 1.013 mm, 1.52 mm and 2.027 mm. The third method is to adjust the point flux diameter by varying the geometry of the setup. By bringing the coincidence detector array closer to the point source array both the spot size and the coincidence counting rate will increase. We will report on the calibration setup factor we are able to achieve while maintaining an average intrinsic spatial resolution of ~1.4 mm FWHM for the effective imaging area of our cMiCE detector.
我们报告了加速连续微型晶体元件(cMiCE)探测器校准过程的方法。我们的cMiCE探测器由一块50毫米×50毫米×8毫米厚的LYSO晶体与一个64通道平板光电倍增管(PMT)耦合而成。该探测器是使用精细像素化单个晶体探测器的设计的低成本替代方案。通过使用基于统计的定位算法,它在探测器的有效面上实现了约1.4毫米半高宽(FWHM)的平均固有空间分辨率。该设计的一个缺点是校准探测器所需的时间长度。我们报告了三种加速此过程的方法。第一种方法是在探测器表面使用多个点通量,以便从单次数据采集中校准探测器的不同点。只要点通量在探测器上适当间隔开,使得信号没有重叠,这种方法就可行。为此专门定制设计了一种能够产生多达16个点通量的特殊多源设备。第二种方案是以较粗的采样对探测器进行表征,并使用插值来创建具有所需探测器采样(例如0.25毫米)的查找表。将针对0.76毫米、1.013毫米、1.52毫米和2.027毫米的采样间隔研究固有空间分辨率性能。第三种方法是通过改变设置的几何形状来调整点通量直径。通过将符合探测器阵列靠近点源阵列,光斑尺寸和符合计数率都会增加。我们将报告在保持我们的cMiCE探测器有效成像区域的平均固有空间分辨率约为1.4毫米FWHM的同时能够实现的校准设置因子。