Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
Genes Chromosomes Cancer. 2010 Sep;49(9):803-9. doi: 10.1002/gcc.20789.
Survival of the malignant Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL) is dependent on constitutive activation of the nuclear factor kappaB (NF-kappaB) transcription factor. The deubiquitinating enzyme CYLD is a negative regulator of NF-kappaB and known to function as a tumor suppressor. To determine whether CYLD mutations play a role in cHL pathogenesis, we sequenced the gene in cHL cell lines and microdissected HRS cells obtained from lymph-node biopsies. A biallelic inactivation by mutations was found in the cHL cell-line KM-H2. However, the other seven cHL cell lines analyzed and HRS cells of 10 primary cHL cases did not show any mutations. By interphase cytogenetics, a (sub)clonal biallelic CYLD deletion was observed by interphase cytogenetics in 1 of 29 primary cHL, whereas signal patterns indicating decreased CYLD copy numbers were observed in a total of 10 of 29 primary cases. Our results suggest that biallelic CYLD mutations are rarely involved in cHL pathogenesis. Nevertheless, it is remarkable that KM-H2 cells, besides the CYLD mutations, also carry inactivating mutations in the genes of two other NF-kappaB inhibitors, that is, NFKBIA and TNFAIP3, exemplifying that multiple lesions in regulators of this signaling pathway can likely cooperatively contribute to the strong NF-kappaB activity of these cells.
恶性霍奇金和 Reed-Sternberg (HRS) 细胞在经典霍奇金淋巴瘤 (cHL) 中的存活依赖于核因子 kappaB (NF-kappaB) 转录因子的组成性激活。去泛素化酶 CYLD 是 NF-kappaB 的负调节因子,已知其作为肿瘤抑制因子发挥作用。为了确定 CYLD 突变是否在 cHL 发病机制中起作用,我们对 cHL 细胞系和从小结活检中获得的 HRS 细胞进行了基因测序。在 cHL 细胞系 KM-H2 中发现了双等位基因失活突变。然而,分析的其他七个 cHL 细胞系和 10 个原发性 cHL 病例的 HRS 细胞没有显示任何突变。通过间期细胞遗传学,在 29 个原发性 cHL 中的 1 个中观察到 (亚)克隆性双等位基因 CYLD 缺失,而在总共 29 个原发性病例中的 10 个中观察到信号模式表明 CYLD 拷贝数减少。我们的研究结果表明,双等位基因 CYLD 突变很少涉及 cHL 的发病机制。然而,值得注意的是,KM-H2 细胞除了 CYLD 突变外,还携带另外两个 NF-kappaB 抑制剂基因的失活突变,即 NFKBIA 和 TNFAIP3,这表明该信号通路的多个调节因子的损伤可能协同作用于这些细胞中强烈的 NF-kappaB 活性。