Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie; Institut für Chemie und Biochemie, Takustr. 3, D-14195 Berlin, Germany.
Langmuir. 2010 Aug 3;26(15):12785-93. doi: 10.1021/la101619y.
The interaction of phenyl-substituted zwitterionic N-diazeniumdiolates PhCH(2)NN(O)NO(CH(2))(2)NH(3)(+) (1) and PhCH(2)NN(O)NO(CH(2))(2)NH(2)(+)CH(2)Ph (2) with aqueous micellar solutions of prototypal surfactants was investigated by means of UV/vis and (1)H NMR spectroscopy in order to establish the localization of hydrophobic N-diazeniumdiolates in micelles as a model for the binding of the NO donors in biological membranes. In the presence of sodium dodecyl sulfate (SDS), significant shifts of the apparent pK(a) values of 1 and 2 were observed, suggesting strong electrostatic interaction between the diazeniumdiolates and the negatively charged SDS micelles. No effect on both pK(a) and rate of NO release was found in the presence of Triton X-100. The solubilization site of micellar bound N-diazeniumdiolates was established by (1)H NMR spectroscopic studies, taking advantage of the spectroscopic effects induced by CH-pi interactions. The spectra indicate that in alkaline solutions of SDS 1 resides preferably at the micellar surface within the interfacial region, whereas the more hydrophobic NO donor 2 penetrates into the apolar region of the micelle. This suggests hydrophobic interaction as the main driving force for micellar binding of 2 in alkaline solution. Similar studies in presence of Triton X-100 indicate that 1 and 2 are adsorbed within the poly(oxyethylene) layer of the micellar surface rather than penetrating the palisade layer of the micelles. In alkaline solutions of hexadecyltrimethylammonium bromide (CTAB), 1 and 2 bind to the cationic micellar aggregates, whereby the solubilization site strongly depends on the hydrophobicity of the substrate. Up to a moderate pH of 8, the hydrophobic NO donor 2 penetrates the hydrocarbon region of the micelles. As a result, the rate of NO release from 2 is noticeably inhibited by the micellar aggregates due to the higher local concentration of hydroxide ions along the micelle-water interface. From solubilization studies, guidelines for the development and application of future NONOates can be derived. The rate of NO release from micellar bound diazeniumdiolates is determined by the surface charge of the micelles. This ability to tune stability is significant for the design and selection of potential NO delivery systems (drug formulations).
苯取代两性离子 N-二氮烯二氢氧化物 PhCH(2)NN(O)NO(CH(2))(2)NH(3)(+) (1) 和 PhCH(2)NN(O)NO(CH(2))(2)NH(2)(+)CH(2)Ph (2) 与典型表面活性剂的水胶束溶液的相互作用通过 UV/vis 和 (1)H NMR 光谱进行了研究,以确定疏水性 N-二氮烯二氢氧化物在胶束中的定位作为生物膜中 NO 供体结合的模型。在存在十二烷基硫酸钠 (SDS) 的情况下,观察到 1 和 2 的表观 pK(a) 值发生了显著变化,表明二氮烯二氢氧化物与带负电荷的 SDS 胶束之间存在强烈的静电相互作用。在存在 Triton X-100 的情况下,对两种 pK(a) 和 NO 释放速率均无影响。通过利用 CH-π 相互作用引起的光谱效应,通过 (1)H NMR 光谱研究确定了胶束结合的 N-二氮烯二氢氧化物的增溶部位。光谱表明,在 SDS 的碱性溶液中,1 优先位于界面区域内的胶束表面,而疏水性更强的 NO 供体 2 则渗透到胶束的非极性区域。这表明疏水性相互作用是碱性溶液中 2 与胶束结合的主要驱动力。在存在 Triton X-100 的情况下进行类似的研究表明,1 和 2 吸附在胶束表面的聚(氧乙烯)层内,而不是渗透到胶束的栅栏层内。在十六烷基三甲基溴化铵 (CTAB) 的碱性溶液中,1 和 2 与阳离子胶束聚集体结合,其中增溶部位强烈依赖于底物的疏水性。在中等 pH 值 8 以下,疏水性的 NO 供体 2 渗透到胶束的烃区域。因此,由于沿胶束-水界面处氢氧根离子的局部浓度较高,2 从胶束结合的二氮烯二氢氧化物中释放 NO 的速率明显受到胶束聚集体的抑制。从增溶研究中,可以得出用于开发和应用未来 NONOates 的指导原则。从胶束结合的二氮烯二氢氧化物中释放 NO 的速率取决于胶束的表面电荷。这种调节稳定性的能力对于设计和选择潜在的 NO 输送系统(药物制剂)非常重要。