Suppr超能文献

具有单元替换的 Hopfield 模型的自洽信噪比分析。

Self-consistent signal-to-noise analysis of Hopfield model with unit replacement.

机构信息

Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatuda-cho, Midori-ku, Yokohama, Kanagawa, Japan.

出版信息

Neural Netw. 2010 Dec;23(10):1180-6. doi: 10.1016/j.neunet.2010.06.006. Epub 2010 Jun 25.

Abstract

The Hopfield model has a storage capacity: the maximum number of memory patterns that can be stably stored. The memory state of this network model disappears if the number of embedded memory patterns is larger than 0.138N, where N is the system size. Recently, it has been shown in numerical simulations that the Hopfield model with a unit replacement process, in which a small number of old units are replaced with new ones at each learning step for embedding a new pattern, can stably retrieve recently embedded memory patterns even if an infinite number of patterns have been embedded. In this paper, we analyze the Hopfield model with the replacement process by utilizing self-consistent signal-to-noise analysis. We show that 3.21 is the minimum number of replaced units at each learning step that avoids an overload evoking disappearance of the memory state when embedding an infinite number of patterns. Furthermore, we show that the optimal number of replaced units at each learning step that maximizes the number of retrievable patterns is 6.95. These critical numbers of replaced units are independent of the system size N. Finally, we compare this model with the Hopfield model with the forgetting process.

摘要

霍普菲尔德模型具有存储容量

可以稳定存储的最大记忆模式数量。如果嵌入的记忆模式数量大于 0.138N(其中 N 是系统大小),则该网络模型的记忆状态将消失。最近,在数值模拟中已经表明,具有单元替换过程的霍普菲尔德模型,其中在每次学习步骤中用新单元替换少量旧单元以嵌入新模式,可以稳定地检索最近嵌入的记忆模式,即使已经嵌入了无限数量的模式。在本文中,我们通过利用自洽信号噪声分析来分析具有替换过程的霍普菲尔德模型。我们表明,当嵌入无限数量的模式时,每个学习步骤中替换的最小单元数为 3.21,可以避免过载导致记忆状态消失。此外,我们表明,在每个学习步骤中替换的最佳单元数是 6.95,可以最大化可检索模式的数量。这些替换单元的临界数量与系统大小 N 无关。最后,我们将该模型与具有遗忘过程的霍普菲尔德模型进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验