Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
J Chem Phys. 2010 Jul 14;133(2):024703. doi: 10.1063/1.3447381.
Lithium-oxygen has one of the highest specific energies among known electrochemical couples and holds the promise of substantially boosting the specific energy of portable batteries. Mechanistic information of the oxygen reduction reaction by Li (Li-ORR) is scarce, and the factors limiting the discharge and charge efficiencies of the Li-oxygen cathode are not understood. To shed light on the fundamental surface chemistry of Li-ORR, we have performed periodic density functional theory calculations in conjunction with thermodynamic modeling for two metal surfaces, Au(111) and Pt(111). On clean Au(111) initial O(2) reduction via superoxide (LiO(2)) formation has a low reversible potential of 1.51 V. On clean Pt(111), the dissociative adsorption of O(2) is facile and the reduction of atomic O has a reversible potential of 1.97 V, whereas the associative channel involving LiO(2) is limited by product stability versus O to 2.04 V. On both surfaces O(2) lithiation significantly weakens the O-O bond, so the product selectivity of the Li-ORR is monoxide (Li(x)O), not peroxide (Li(x)O(2)). Furthermore, on both surfaces Li(x)O species are energetically driven to form (Li(x)O)(n) aggregates, and the interface between (Li(x)O)(n) and the metal surfaces are active sites for forming and dissociating LiO(2). Given that bulk Li(2)O((s)) is found to be globally the most stable phase up to 2.59 V, the presence of available metal sites may allow the cathode to access the bulk Li(2)O phase across a wide range of potentials. During cycling, the discharge process (oxygen reduction) is expected to begin with the reduction of chemisorbed atomic O instead of gas-phase O(2). On Au(111) this occurs at 2.42 V, whereas the greater stability of O on Pt(111) limits the reversible potential to 1.97 V. Therefore, the intrinsic reactivity of Pt(111) renders it less effective for Li-ORR than Au(111).
锂-氧具有已知电化学对中最高的比能量之一,并有望大幅提高便携式电池的比能量。锂(Li-ORR)的氧还原反应的机理信息很少,并且限制 Li-氧阴极放电和充电效率的因素尚不清楚。为了阐明 Li-ORR 的基本表面化学,我们针对两种金属表面(Au(111)和 Pt(111))进行了周期性密度泛函理论计算和热力学建模。在清洁的 Au(111)上,初始 O2 通过超氧化物(LiO2)形成的还原具有 1.51 V 的低可逆电位。在清洁的 Pt(111)上,O2 的解离吸附很容易,并且原子 O 的还原具有 1.97 V 的可逆电位,而涉及 LiO2 的缔合通道由于产物稳定性而受到限制,仅为 2.04 V。在这两种表面上,O2 的锂化都会显著削弱 O-O 键,因此 Li-ORR 的产物选择性是一氧化物(Li(x)O),而不是过氧化物(Li(x)O2)。此外,在这两种表面上,Li(x)O 物种都被强烈驱动形成(Li(x)O)(n) 聚集体,并且(Li(x)O)(n) 和金属表面之间的界面是形成和解离 LiO2 的活性位点。鉴于块状 Li2O((s)) 被发现是在 2.59 V 之前全球最稳定的相,可用金属位点的存在可能允许阴极在很宽的电位范围内进入块状 Li2O 相。在循环过程中,放电过程(氧还原)预计将从化学吸附原子 O 的还原开始,而不是气相 O2。在 Au(111)上,这发生在 2.42 V,而 Pt(111)上 O 的稳定性更高,限制了可逆电位为 1.97 V。因此,Pt(111)的固有反应性使其在 Li-ORR 中的活性不如 Au(111)。