Zhang Huiming
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
Adenoviruses (Ads) comprise a non-enveloped icosahedral protein shell (capsid) 70–100 nm in diameter surrounding an inner vial genome core (1). Human Ads consist of 51 distinct serotypes that are classified into six subgroups (species) designated A–F (2). Some serotypes such as serotypes 2 (Ad2) and 5 (Ad5) of species C only induce a mild, non-oncogenic respiratory infection, making them suitable for development of Ad-based vaccines and gene delivery vehicles for systematic administrations (1). Their core genome, a linear, double-stranded DNA of ~36 kb, contains five early transcription units (E1A, E1B, E2, E3, and E4), four intermediate units (IVA2, IX, VAI, and VAII), and one later transcription unit (2). The functions in the early transcription regions have been well identified: E1A activates cell cycles and initiates DNA replication; E1B blocks apoptosis induced by E1A activity; E2 facilitates viral DNA replication; E3 modulates host immune responses; and E4 regulates DNA replication, mRNA transport, and apoptosis (3). As a gene delivery vehicle, the genome core in Ad2 or Ad5 is usually modified with recombinant transcription activators (RTAs), in which foreign DNA with a size of up to 7.5 kb can be inserted in the deleted E1 or E3 regions in the Ads (4). Such genetic modification can incorporate ligands that can recognize specific cellular receptors and/or block the adenoviral naïve receptor (coxsackie-adenovirus receptor (CAR)), so that their tissue specificity is enhanced significantly. For example, the gene for the androgen receptor (AR) regulates the growth of prostate epithelial cells, induces the expression of prostate-specific antigen (PSA), and controls the growth of prostate cancer in the early phase. The AR gene can be introduced to the adenoviral genome to target AR-responsive prostate cancer or metastasis (5). Furthermore, reporter genes such as firefly luciferase (Fluc) (6) can be included for optical imaging, or suicide genes such as herpes simplex virus type 1-thymidine kinase (HSV1-TK, also a reporter gene for positron emission tomography (PET)), can be used for therapeutic applications (7). HSV1-TK is a homodimer composed of two 376-residue subunits, and it functions as a key enzyme in the pyrimidine-salvage pathway to catalyze the phosphorylation of thymidine (dT) to thymidine monophosphate (dTMP) in the presence of ATP and Mg (7). Unlike mammalian thymidine kinases, HSV1-TK can efficiently phosphorylate substrates such as acycloguanosines and uracils (8). Thus, radiolabeled acycloguanosines such as 9-(4-[F]fluoro-3-hydroxymethylbutyl)guanine ([F]FHBG, [F]FPCV) or uracils such as 2’-fluoro-2’-deoxy-1-β-D-arabino-furanosyl-5-iodo-uracil ([I]FIAU) are used as HSV1-TK imaging probes for positron emission tomography (PET) or single-photon emission tomography (SPECT). As a mutant of HSV1-TK, HSV1-sr39 has five nonpolar amino acids being replaced at its active site: L159I, I160F, F161L, A162F, and L163M (9). Such remodeling in the active site leads to a substantial increase in the binding affinity to acycloguanosines; i.e., the 50% inhibition concentration of ganciclovir reduces ~300-fold. This also increases the imaging detection sensitivity; i.e., a more than two-fold enhancement has been observed in detection of [F]FHBG with HSV1-sr39 compared to that with HSV1-TK, which provides an efficient gene-reporter probe combination (HSV1-sr39-[F]FHBG) for PET imaging (8). The transcriptional activity of adenoviral genes can be amplified several orders of magnitude with the use of the GAL4-VP2 fusion protein, where GAL4 is a DNA-binding domain (147 amino acids) and VP2 is a two-tandem repeat of the herpes simplex virus VP16 acidic activation domain (78 amino acids) (10). The two-step transcriptional amplification (TSTA) system is a novel recombinant transcription activation approach for designing a PSA promoter/enhancer, which can provide as high as ~800-fold enhancement in transcription activity compared with its conventional analog (11, 12). The TSTA system is composed of two parts in general; i.e., an activator PBC-VP2 that contains a PSA promoter with a duplicated ARE4 enhancer core (each core has four binding sites for AR) to control the expression of the chimeric protein GAL4-VP2 and provide cell-specific binding, and the reporter (GAL4)-sr39 (G5-sr39), which contains a reporter with five GAL4 repeats to generate a GAL4-responsive sr39 (13). The two parts are linked in a head-to-head orientation and are inserted into the E1 region of Ad5 to produce -(PSE-BC)-(GAL4-(VP16))-(GAL4)-sr39 (AdTSTA-sr39), a reporter gene for PET imaging of AR-responsive PSA . Such a construct can provide ~12-fold amplification (12) two steps: the PSA regulates the expression of the potent transcription activator GAL4-VP2, which in turn activates the GAL4-responsive reporter gene sr39. AdTSTA-sr39 can function effectively as a gene delivery vehicle and as a lymphotropic agent in prostate cancer and metastasis (13, 14).
腺病毒(Ads)由一个直径70 - 100纳米的无包膜二十面体蛋白质外壳(衣壳)组成,其围绕着一个内部病毒基因组核心(1)。人腺病毒由51种不同的血清型组成,这些血清型被分为六个亚组(种),命名为A - F(2)。一些血清型,如C种的血清型2(Ad2)和5(Ad5),仅引起轻度的、非致癌性的呼吸道感染,这使得它们适合开发用于全身给药的基于腺病毒的疫苗和基因递送载体(1)。它们的核心基因组是一个约36 kb的线性双链DNA,包含五个早期转录单元(E1A、E1B、E2、E3和E4)、四个中间单元(IVA2、IX、VAI和VAII)以及一个晚期转录单元(2)。早期转录区域的功能已得到充分鉴定:E1A激活细胞周期并启动DNA复制;E1B阻断由E1A活性诱导的细胞凋亡;E2促进病毒DNA复制;E3调节宿主免疫反应;E4调节DNA复制、mRNA运输和细胞凋亡(3)。作为一种基因递送载体,Ad2或Ad5中的基因组核心通常用重组转录激活因子(RTAs)进行修饰,其中大小可达7.5 kb的外源DNA可插入腺病毒缺失的E1或E3区域(4)。这种基因修饰可以掺入能够识别特定细胞受体和/或阻断腺病毒天然受体(柯萨奇 - 腺病毒受体(CAR))的配体,从而显著增强它们的组织特异性。例如,雄激素受体(AR)基因调节前列腺上皮细胞的生长,诱导前列腺特异性抗原(PSA)的表达,并在早期控制前列腺癌的生长。AR基因可被引入腺病毒基因组以靶向AR反应性前列腺癌或转移灶(5)。此外,可以包含报告基因,如萤火虫荧光素酶(Fluc)(6)用于光学成像,或者自杀基因,如单纯疱疹病毒1型胸苷激酶(HSV1 - TK,也是正电子发射断层扫描(PET)的报告基因),可用于治疗应用(7)。HSV1 - TK是由两个376个残基亚基组成的同二聚体,它在嘧啶补救途径中作为关键酶,在ATP和Mg存在的情况下催化胸苷(dT)磷酸化为胸苷一磷酸(dTMP)(7)。与哺乳动物胸苷激酶不同,HSV1 - TK可以有效地磷酸化诸如阿昔洛韦鸟苷和尿嘧啶等底物(8)。因此,放射性标记的阿昔洛韦鸟苷,如9 - (4 - [F]氟 - 3 - 羟甲基丁基)鸟嘌呤([F]FHBG,[F]FPCV)或尿嘧啶,如2’ - 氟 - 2’ - 脱氧 - 1 - β - D - 阿拉伯呋喃糖基 - 5 - 碘尿嘧啶([I]FIAU)被用作HSV1 - TK成像探针用于正电子发射断层扫描(PET)或单光子发射断层扫描(SPECT)。作为HSV1 - TK的突变体,HSV1 - sr39在其活性位点有五个非极性氨基酸被替换:L159I、I160F、F161L、A162F和L163M(9)。活性位点的这种重塑导致与阿昔洛韦鸟苷的结合亲和力大幅增加;即,更昔洛韦的50%抑制浓度降低了约300倍。这也提高了成像检测灵敏度;即,与HSV1 - TK相比,用HSV1 - sr39检测[F]FHBG时观察到检测增强了两倍多,这为PET成像提供了一种有效的基因 - 报告探针组合(HSV1 - sr39 - [F]FHBG)(8)。使用GAL4 - VP2融合蛋白可以将腺病毒基因的转录活性放大几个数量级,其中GAL4是一个DNA结合结构域(147个氨基酸),VP2是单纯疱疹病毒VP16酸性激活结构域的两个串联重复(78个氨基酸)(10)。两步转录扩增(TSTA)系统是一种用于设计PSA启动子/增强子的新型重组转录激活方法,与传统类似物相比,其转录活性可提高约800倍(11, 12)。TSTA系统通常由两部分组成;即,激活剂PBC - VP2,其包含一个带有重复ARE4增强子核心(每个核心有四个AR结合位点)以控制嵌合蛋白GAL4 - VP2表达并提供细胞特异性结合的PSA启动子,以及报告基因(GAL4) - sr39(G5 - sr39),其包含一个带有五个GAL4重复序列的报告基因以产生GAL4反应性sr39(13)。这两部分以头对头的方向连接,并插入Ad5的E1区域以产生 - (PSE - BC) - (GAL4 - (VP16)) - (GAL4) - sr39(AdTSTA - sr39),一种用于AR反应性PSA的PET成像的报告基因。这样的构建体可以在两个步骤中提供约12倍的扩增(12):PSA调节强效转录激活因子GAL4 - VP2的表达,而GAL4 - VP2又激活GAL4反应性报告基因sr39。AdTSTA - sr39可以有效地作为基因递送载体以及作为前列腺癌和转移中的嗜淋巴细胞剂发挥作用(13, 14)。