Zhang Huiming
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
Estrogen receptors (ERs) are ligand-inducible nuclear transcription factors belonging to the superfamily of steroid hormone receptors (1). The endogenous ligands of ERs such as estradiol (E2) (2), an important estrogen in humans, are secreted by endocrine cells and distributed to their targets blood circulation (3). Upon the binding of estrogens to their inactive apoprotein forms in the cytoplasm or nucleus, ERs are transformed into active receptors that can effectively bind to a DNA element (hormone response element, HRE), leading to transcription of genes (3). ERs consist of six functional domains (A–F): the A/B region contains transactivation functions, region C contains DNA-binding domain (DBD), and region E contains ligand-binding domain (LBD) with an activation function (AF-2) (4). The LBD is an antiparallel helical sandwich of three layers formed by twelve α-helices (H1–H12) and one β-turn (5). The helix H12 serves as a lid in the ligand-binding cavity, thus, behaves as a “molecular switch” to prevent or enhance ER from binding to an array of co-activator proteins (6). The binding of ligands induces a reposition of the helices, especially the reorientation of H12, in the LBD, and can generate different functions. For instance, the binding of ER agonists such as E2 or diethylstilbestrol (DES) leads to H12 aligned over the LBD to yield a specific binding site for the consensus LXXLL motif in AF-2; the binding of selective ER modulators (SERMs) such as raloxifene or tamoxifen sterically hinders the H12 positioning to prevent the formation of a binding surface for AF-2 (4). ERs are responsible for the growth, development, and maintenance of the reproductive skeletal, neuronal, and immune systems (6). The deficiency or excess of estrogens can lead to various diseases including osteoporosis and breast carcinoma. A variety of therapeutic strategies have been developed on the basis of the anti-ER mechanism, including the use of SERMs to provide optimal agonist or antagonist activities in ER-expressed tissues. luciferase (Rluc) is a 36-kDa enzyme protein extracted from a bioluminescent soft coral (sea pansy ()) (7). Rluc can catalyze emission of light from substrates; i.e., the oxidation of coelenterazine to coelenteramide generates a green fluorescence (535–550 nm) (8). Rluc can be split into two domains: a large N-terminal domain (amino acids 1–221) and a C-terminal domain (amino acids 230–311) (9). Splitting Rluc into N- and C-terminal fragments destroys its enzymatic activity, resulting in a complete loss of bioluminescence. The enzymatic activity or bioluminescence can be restored if the N- and C-terminal fragments are in close proximity. This led to the development of the split reporter, a novel labeling strategy that has been used in imaging protein–protein interactions (10) and/or protein activity (11) . For instance, protein A is connected with the N-terminal fragment of Rluc, and protein B is connected with the C-terminal fragment of Rluc. Interaction between proteins A and B recovers the enzymatic activity of Rluc by bringing the two fragments of Rluc close together, which allows for recovery of bioluminescence (10). NRluc-hER-CRluc (hERNCRluc) is an optical agent used to image the intramolecular folding of human ER (hER) (6). hERNCRluc consists of four sequentially linked components: an N-terminal Rluc (N-Rluc) fragment, a fragment of hER α-isoform (hERα) containing the LBD (amino acids 281–549, hER), a spacer linker ((GGGGS)), and a C-terminal Rluc (C-Rluc). The included hER fragment (hER) provides a binding cavity for various ligands, and its conformation can be altered upon binding of the ligands. Depending on the produced protein-folding pattern, partial to full complementation of the N-Rluc and C-Rluc occurs, which is measurable with bioluminescence imaging. hERNCRluc is suitable for distinguishing the functionalities in various ER ligands (i.e., agonists, antagonist, or SERMs) with imaging.
雌激素受体(ERs)是属于类固醇激素受体超家族的配体诱导型核转录因子(1)。ERs的内源性配体,如雌二醇(E2)(2),人类重要的雌激素,由内分泌细胞分泌并通过血液循环分布到其靶标(3)。雌激素与细胞质或细胞核中无活性的载脂蛋白形式结合后,ERs转化为活性受体,能够有效结合DNA元件(激素反应元件,HRE),从而导致基因转录(3)。ERs由六个功能结构域(A - F)组成:A/B区域包含反式激活功能,C区域包含DNA结合结构域(DBD),E区域包含具有激活功能(AF - 2)的配体结合结构域(LBD)(4)。LBD是由十二个α - 螺旋(H1 - H12)和一个β - 转角形成的三层反平行螺旋夹心结构(5)。螺旋H12在配体结合腔中起盖子作用,因此,表现为“分子开关”,以防止或增强ER与一系列共激活蛋白的结合(6)。配体的结合诱导LBD中螺旋的重新定位,特别是H12的重新定向,并可产生不同功能。例如,ER激动剂如E2或己烯雌酚(DES)的结合导致H12在LBD上对齐,为AF - 2中的共有LXXLL基序产生特定结合位点;选择性ER调节剂(SERM)如雷洛昔芬或他莫昔芬的结合在空间上阻碍H12定位,以防止形成AF - 2的结合表面(4)。ERs负责生殖、骨骼、神经和免疫系统的生长、发育和维持(6)。雌激素的缺乏或过量可导致包括骨质疏松症和乳腺癌在内的各种疾病。基于抗ER机制已开发出多种治疗策略,包括使用SERM在ER表达组织中提供最佳激动剂或拮抗剂活性。 荧光素酶(Rluc)是从生物发光软珊瑚(海肾())中提取的一种36 kDa的酶蛋白(7)。Rluc可以催化底物发光;即,腔肠素氧化为腔肠酰胺产生绿色荧光(535 - 550 nm)(8)。Rluc可分为两个结构域:一个大的N端结构域(氨基酸1 - 221)和一个C端结构域(氨基酸230 - 311)(9)。将Rluc拆分为N端和C端片段会破坏其酶活性,导致生物发光完全丧失。如果N端和C端片段紧密靠近,酶活性或生物发光可以恢复。这导致了分裂报告基因的开发,这是一种新型标记策略,已用于成像蛋白质 - 蛋白质相互作用(10)和/或蛋白质活性(11)。例如,蛋白A与Rluc的N端片段连接,蛋白B与Rluc的C端片段连接。蛋白A和B之间的相互作用通过使Rluc的两个片段靠近而恢复Rluc的酶活性,从而恢复生物发光(10)。NRluc - hER - CRluc(hERNCRluc)是一种用于成像人类ER(hER)分子内折叠的光学试剂(6)。hERNCRluc由四个顺序连接的组件组成:一个N端Rluc(N - Rluc)片段、一个包含LBD(氨基酸281 - 549,hER)的hERα异构体(hERα)片段、一个间隔接头((GGGGS))和一个C端Rluc(C - Rluc)。包含的hER片段(hER)为各种配体提供一个结合腔,其构象可在配体结合时改变。根据产生的蛋白质折叠模式,N - Rluc和C - Rluc会发生部分到完全互补,这可以通过生物发光成像测量。hERNCRluc适用于通过成像区分各种ER配体(即激动剂、拮抗剂或SERM)的功能。