Suppr超能文献

与磁性氧化铁纳米颗粒偶联的尿激酶型纤溶酶原激活剂的Cy5.5氨基末端片段

Cy5.5-Amino-terminal fragment of urokinase-type plasminogen activator conjugated to magnetic iron oxide nanoparticles

作者信息

Leung Kam

机构信息

National Center for Biotechnology Information, NLM, NIH

Abstract

Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used in imaging because of their abundance in water molecules. Water comprises ~80% of most soft tissue. The contrast of proton MRI depends primarily on the density of the nucleus (proton spins), the relaxation times of the nuclear magnetization (, longitudinal, and , transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the development of contrast agents. Most contrast agents affect the T1 and relaxation times of the surrounding nuclei, mainly the protons of water. * is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field [1]. Cross-linked iron oxide (CLIO) nanoparticles and other iron oxide formulations affect primarily and lead to decreased signals. On the other hand, the paramagnetic agents, such as gadolinium (Gd), and manganese (Mn), accelerate relaxation and lead to brighter contrast images. Optical fluorescence imaging is increasingly used to obtain biological functions of specific targets [2, 3] in small animals. However, the intrinsic fluorescence of biomolecules poses a problem when visible light (350-700 nm) absorbing fluorophores are used. Near-infrared (NIR) fluorescence (700-1000 nm) detection avoids the background fluorescence interference of natural biomolecules, providing a high contrast between target and background tissues. NIR fluorophores have wider dynamic range and minimal background as a result of reduced scattering compared with visible fluorescence detection. They also have high sensitivity, resulting from low infrared background, and high extinction coefficients, which provide high quantum yields. The NIR region is also compatible with solid-state optical components, such as diode lasers and silicon detectors. NIR fluorescence imaging is becoming a non-invasive alternative to radionuclide imaging in small animals. Extracellular matrix (ECM) adhesion molecules consist of a complex network of fibronectins, collagens, chondroitins, laminins, glycoproteins, heparin sulfate, tenascins, and proteoglycans that surround connective tissue cells, and they are mainly secreted by fibroblasts, chondroblasts, and osteoblasts [4]. Cell substrate adhesion molecules are considered essential regulators of cell migration, differentiation, and tissue integrity and remodeling. These molecules play an important role in inflammation and atherogenesis, but they also participate in the process of invasion and metastasis of malignant cells in the host tissue [5]. Invasive tumor cells adhere to the ECM, which provides a matrix environment for permeation of tumor cells through the basal lamina and underlying interstitial stroma of the connective tissue. Overexpression of matrix metalloproteinases (MMPs) and other proteases by tumor cells allows intravasation of tumor cells into the circulatory system after degradation of the basement membrane and ECM [6]. Several families of proteases are involved in atherogenesis, myocardial infarction, angiogenesis, and tumor invasion and metastasis [7-10]. Urokinase-type plasminogen activator (uPA) is a serine protease [11, 12]. The uPA and uPA receptor (uPAR) system is responsible for tissue degradation after plasminogen activation to plasmin, which leads to a cascade of proteolysis or thrombolysis depending on the physiological conditions. uPA also directly activates MMPs, vascular endothelial growth factor, and human growth factor [13]. Malignant tumors and tumor-associated stromal cells (macrophages, endothelial cells and fibroblasts) often express high levels of uPA and uPAR [14]; therefore, the uPA/uPAR system is linked to vascular diseases and cancer. The amino-terminal fragment (ATF, 1-135 amino acids) of uPA binds with high affinity to uPAR [15]. Yang et al. [16] have developed a multimodality imaging probe by conjugation of Cy5.5-ATF to iron oxide nanoparticles to form Cy5.5-ATF-IO nanoparticles for NIR imaging and MRI of uPAR expression in tumor. Cy5.5 is a NIR fluorescent dye with absorbance maximum at 675 nm and emission maximum at 694 nm with a high extinction coefficient of 250,000 Mcm.

摘要

磁共振成像(MRI)能在空间和功能上描绘组织信息。质子(氢原子核)因其在水分子中含量丰富而被广泛用于成像。水占大多数软组织的约80%。质子MRI的对比度主要取决于原子核(质子自旋)的密度、核磁化的弛豫时间(纵向弛豫时间T1和横向弛豫时间T2)、组织的磁环境以及组织的血流情况。然而,正常组织与病变组织之间对比度不足,这就需要研发造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫时间,主要是水分子的质子。T2是由分子相互作用和磁场中组织的固有磁不均匀性引起的自旋-自旋弛豫时间[1]。交联氧化铁(CLIO)纳米颗粒和其他氧化铁制剂主要影响T2,导致信号降低。另一方面,顺磁性造影剂,如钆(Gd)和锰(Mn),会加速T1弛豫,从而产生对比度更高的明亮图像。光学荧光成像越来越多地用于获取小动物体内特定靶点的生物学功能[2,3]。然而,当使用吸收可见光(350 - 700 nm)的荧光团时,生物分子的固有荧光会带来问题。近红外(NIR)荧光(700 - 1000 nm)检测可避免天然生物分子的背景荧光干扰,使目标组织与背景组织之间具有高对比度。与可见光荧光检测相比,近红外荧光团由于散射减少而具有更宽的动态范围和最小的背景。它们还具有高灵敏度,这源于低红外背景以及高消光系数,从而提供高量子产率。近红外区域也与固态光学组件兼容,如二极管激光器和硅探测器。近红外荧光成像正成为小动物放射性核素成像的一种非侵入性替代方法。细胞外基质(ECM)黏附分子由围绕结缔组织细胞的纤连蛋白、胶原蛋白、软骨素、层粘连蛋白、糖蛋白、硫酸肝素、腱生蛋白和蛋白聚糖组成的复杂网络构成,它们主要由成纤维细胞、成软骨细胞和成骨细胞分泌[4]。细胞-底物黏附分子被认为是细胞迁移、分化以及组织完整性和重塑的重要调节因子。这些分子在炎症和动脉粥样硬化形成中起重要作用,但它们也参与恶性细胞在宿主组织中的侵袭和转移过程[5]。侵袭性肿瘤细胞黏附于细胞外基质,细胞外基质为肿瘤细胞穿过基底膜和结缔组织的下层间质基质提供了基质环境。肿瘤细胞过度表达基质金属蛋白酶(MMPs)和其他蛋白酶,使得肿瘤细胞在基底膜和细胞外基质降解后能够侵入循环系统[6]。几个蛋白酶家族参与动脉粥样硬化、心肌梗死、血管生成以及肿瘤侵袭和转移过程[7 - 10]。尿激酶型纤溶酶原激活剂(uPA)是一种丝氨酸蛋白酶[11,12]。uPA和uPA受体(uPAR)系统负责纤溶酶原激活为纤溶酶后的组织降解,这会根据生理条件引发一系列蛋白水解或溶栓反应。uPA还直接激活MMPs、血管内皮生长因子和人类生长因子[13]。恶性肿瘤以及肿瘤相关的基质细胞(巨噬细胞、内皮细胞和成纤维细胞)通常高表达uPA和uPAR[14];因此,uPA/uPAR系统与血管疾病和癌症相关。uPA的氨基末端片段(ATF,1 - 135个氨基酸)与uPAR具有高亲和力[15]。Yang等人[16]通过将Cy5.5 - ATF与氧化铁纳米颗粒偶联,开发了一种多模态成像探针,形成用于肿瘤中uPAR表达的近红外成像和MRI的Cy5.5 - ATF - IO纳米颗粒。Cy5.5是一种近红外荧光染料,最大吸收波长为675 nm,最大发射波长为694 nm,消光系数高达250,000 Mcm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验