Cheng Kenneth T.
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
(,)-2-[α-(2-(2-[F]Fluoroethoxy)phenoxy)benzyl]morphine ((,)-[F]FRB) is a radioligand developed for positron emission tomography (PET) imaging of the brain adrenergic receptors (1, 2). It is a derivative of reboxetine (()-2-[()-2-ethoxyphenoxy)benzyl]morpholine), a norepinephrine (NE) transporter (NET) inhibitor, labeled with F, a positron emitter with a physical half-life () of 109.8 min. Many diseases affect the sympathetic nervous system (SNS), and imaging of pathologic changes of adrenergic transmission has been an important area of PET research (3, 4). Most postganglionic sympathetic neurons in the autonomic nervous system release the neurotransmitter NE, which stimulates adrenergic receptors in various effector organs (5). There are different types and subtypes of adrenergic receptors, and they are characterized as α to α, α to α, and β to β (6). All NE receptors belong to the G-protein−linked receptor superfamily and mediate slow neuromodulatory postsynaptic responses. The NET is a transmembrane protein located in the adrenergic nerve terminals and is responsible for active reuptake (uptake-1) of NE released from neurons (7). NE is stored in the neuronal vesicles and is released on stimulation. Significant expression of NET is found in major organs of the SNS, such as the heart and brain. Brain NETs are involved in various neurologic and psychiatric diseases, including depression, attention deficit hyperactivity disorder, drug addiction, and eating disorders (8). Brain NETs are also the site of action of many antidepressant drugs in the brain (9). Molecular probes with structures closely related to NE can be used to assess the integrity of presynaptic sympathetic nerve terminals in patients with various diseases. NE synthesis is similar to dopamine synthesis, and dopamine is converted to NE by the enzyme dopamine-β-hydroxylase (6). [I]--Iodobenzylguanidine, [C]-hydroxyephedrine, [C]norepinephrine, and many other radioligands have been developed and used for peripheral neuronal imaging (10). However, this class of tracers is not suitable for the study of brain NET system because they are not able to cross the blood-brain barrier (2). In the brain, NET levels are relatively lower than other receptors, such as dopamine transporters (DATs) and serotonin transporters (9). Several NET reuptake inhibitors, such as [C]desipramine, have been tested, but they showed high nonspecific binding. Reboxetine is a specific NET inhibitor with a high affinity and selectivity [inhibitory concentration (IC) DAT/NET = 4,000]. C-labeled reboxetine derivatives ((,)-[C]methylreboxetine((,)-[C]MRB)) have shown specific localization and favorable binding kinetics in rats and non-human primates with PET imaging (11). Because of the potential advantages associated with the longer of F, Lin et al. (1) synthesized a number of F labeled reboxetine analogs as promising radioligands for NET imaging with PET.
(,)-2-[α-(2-(2-[F]氟乙氧基)苯氧基)苄基]吗啡((,)-[F]FRB)是一种开发用于脑肾上腺素能受体正电子发射断层扫描(PET)成像的放射性配体(1,2)。它是瑞波西汀(()-2-[()-2-乙氧基苯氧基)苄基]吗啉)的衍生物,瑞波西汀是一种去甲肾上腺素(NE)转运体(NET)抑制剂,用F标记,F是一种物理半衰期()为109.8分钟的正电子发射体。许多疾病会影响交感神经系统(SNS),肾上腺素能传递的病理变化成像一直是PET研究的一个重要领域(3,4)。自主神经系统中的大多数节后交感神经元释放神经递质NE,NE刺激各种效应器官中的肾上腺素能受体(5)。肾上腺素能受体有不同的类型和亚型,它们被分为α1至α2、α3至α5以及β1至β3(6)。所有NE受体都属于G蛋白偶联受体超家族,介导缓慢的神经调节性突触后反应。NET是一种位于肾上腺素能神经末梢的跨膜蛋白,负责神经元释放的NE的主动重摄取(摄取-1)(7)。NE储存在神经囊泡中,受到刺激时释放。在SNS的主要器官如心脏和大脑中发现有NET的显著表达。脑NET与多种神经和精神疾病有关,包括抑郁症、注意力缺陷多动障碍、药物成瘾和饮食失调(8)。脑NET也是许多抗抑郁药物在脑中的作用部位(9)。结构与NE密切相关的分子探针可用于评估各种疾病患者突触前交感神经末梢的完整性。NE的合成与多巴胺的合成相似,多巴胺通过多巴胺-β-羟化酶转化为NE(6)。[I]--碘苄胍、[C] - 羟基麻黄碱、[C]去甲肾上腺素以及许多其他放射性配体已被开发并用于外周神经元成像(10)。然而,这类示踪剂不适合用于研究脑NET系统,因为它们无法穿过血脑屏障(2)。在脑中,NET水平相对低于其他受体,如多巴胺转运体(DAT)和5-羟色胺转运体(9)。已经测试了几种NET重摄取抑制剂,如[C]地昔帕明,但它们表现出高非特异性结合。瑞波西汀是一种具有高亲和力和选择性的特异性NET抑制剂[抑制浓度(IC)DAT/NET = 4000]。用C标记的瑞波西汀衍生物((,)-[C]甲基瑞波西汀((,)-[C]MRB))在大鼠和非人类灵长类动物的PET成像中显示出特异性定位和良好的结合动力学(11)。由于F的半衰期较长具有潜在优势,Lin等人(第1点)合成了许多F标记的瑞波西汀类似物作为PET用于NET成像的有前景的放射性配体。