Cheng Kenneth T.
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
Radioiodinated anti–TAG-72 CC49 Fab’ antibody fragment (I-CC49 Fab’), which is formed by the conjugation of I with an anti–tumor-associated glycoprotein 72 (TAG-72) Fab’ antibody fragment, has been developed for gamma imaging of cancers that express TAG-72 (1-3). I has a relatively long physical half-life () of 60 days and a gamma energy that makes it suitable for imaging only in small animals. I, another radioiodine, has better physical properties for single-photon emission computed tomography (SPECT) and planar gamma imaging in humans. The TAG-72 antigen was isolated from the LS-174T human colon cancer xenograft as a high molecular weight glycoprotein (molecular mass of 10 kDa) with mucin-like characteristics (4-7). The TAG-72 antigen is expressed on a variety of human adenocarcinomas such as pancreatic, breast, colorectal, prostate, endometrial, and ovarian cancers. This antigen has also been shown to be shed into the serum of cancer patients (8). The murine monoclonal antibody B72.3 (MAb B72.3) against TAG-72 mucin was initially generated by immunization of mice with a membrane-enriched fraction of a human breast carcinoma (9). With the use of affinity-purified TAG-72 from LS-174T as an immunogen, CC49 and other anti–TAG-72 MAbs with higher affinity constants have been produced and characterized (4, 5, 9, 10). CC49 MAb appears to react with a unique disaccharide sialyl-Tn (STn) epitope on TAG-72 (11, 12). Radiolabeled MAbs have been developed for both the diagnosis and treatment of tumors (13). Radiolabeled B72.3 and CC49 exhibit excellent tumor localization capabilities with potential diagnostic and therapeutic applications in the clinical setting (14, 15). Because of their relatively large size, intact radiolabeled MAbs tend to have unfavorable imaging kinetics, poor tumor penetration, and high potential for human anti-mouse antibody response (10, 16-18). One possible approach to minimize these problems is reducing intact antibodies to smaller antibody fragments such as F(ab’) and Fab’ (19). Another approach is the development of genetic engineering methods to obtain single-chain Fv constructs (scFv) and multivalent scFv constructs (10, 20, 21). The F(ab’) and Fab’ fragments can generally be prepared by simple enzymatic cleavage. Pepsin digestion of the intact IgG removes the antibody constant region and produces the F(ab’) fragment with a molecular weight of 100,000 or the Fab’ fragment with a molecular weight of 50,000 (1). Because of the smaller size, the Fab’ fragment has faster blood clearance and better tumor penetration than intact IgG (2, 22). The removal of the Fc portion during the enzymatic cleavage also reduces nonspecific binding of Fab’ to Fc receptors. The and properties of the radioiodinated CC49 Fab’ fragment have been studied (1-3, 23, 24).
放射性碘化抗TAG-72 CC49 Fab’抗体片段(I-CC49 Fab’)是通过将碘与抗肿瘤相关糖蛋白72(TAG-72)Fab’抗体片段结合而成,已被开发用于对表达TAG-72的癌症进行γ成像(1-3)。碘的物理半衰期相对较长,为60天,其γ能量使其仅适用于小动物成像。另一种放射性碘在单光子发射计算机断层扫描(SPECT)和人体平面γ成像方面具有更好的物理特性。TAG-72抗原是从LS-174T人结肠癌异种移植瘤中分离出来的一种高分子量糖蛋白(分子量为10 kDa),具有粘蛋白样特征(4-7)。TAG-72抗原在多种人类腺癌如胰腺癌、乳腺癌、结直肠癌、前列腺癌、子宫内膜癌和卵巢癌中表达。该抗原也已被证明会脱落到癌症患者的血清中(8)。抗TAG-72粘蛋白的鼠单克隆抗体B72.3(MAb B72.3)最初是通过用人乳腺癌的富含膜成分免疫小鼠产生的(9)。以从LS-IS74T中亲和纯化的TAG-72作为免疫原,已制备并表征了CC49和其他具有更高亲和常数的抗TAG-72单克隆抗体(4、5、9、10)。CC49单克隆抗体似乎与TAG-72上独特的二糖唾液酸-Tn(STn)表位反应(11、12)。放射性标记的单克隆抗体已被开发用于肿瘤的诊断和治疗(13)。放射性标记的B72.3和CC49在临床环境中具有出色的肿瘤定位能力,具有潜在的诊断和治疗应用(14、15)。由于其相对较大的尺寸,完整的放射性标记单克隆抗体往往具有不良的成像动力学、较差的肿瘤穿透力以及较高的人抗鼠抗体反应可能性(10、16-18)。将这些问题最小化的一种可能方法是将完整抗体降解为较小的抗体片段,如F(ab’)和Fab’(19)。另一种方法是开发基因工程方法以获得单链Fv构建体(scFv)和多价scFv构建体(10、20、21)。F(ab’)和Fab’片段通常可以通过简单的酶切制备。用胃蛋白酶消化完整的IgG可去除抗体恒定区,产生分子量为100,000的F(ab’)片段或分子量为50,000的Fab’片段(1)。由于尺寸较小,Fab’片段比完整的IgG具有更快的血液清除率和更好的肿瘤穿透力(2、22)。酶切过程中Fc部分的去除也减少了Fab’与Fc受体的非特异性结合。已对放射性碘化CC49 Fab’片段的 和 特性进行了研究(1-3、23、24)。