Zhang Huiming
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a homodimeric glycoprotein weighing 45 kDa (1). The VEGF family consists of six groups: VEGF-A, -B, -C, -D, -E, and the placental growth factor (PIGF) (2). Structurally, VEGFs are related to the platelet-derived growth factors (PDGF), and they all contain the characteristic eight-cysteine residues known as the cysteine knot motif (3). Intrachain and interchain disulfide bonds are formed between these cysteine residues in conserved positions (2). VEGFs bind specifically to three cell-surface receptor tyrosine kinases, including fms-like tyrosine kinase-1 (Flt-1) or VEGF receptor-1 (VEGFR-1), kinase insert domain-containing receptor (KDR) or VEGRF-2, and Flt-4 or VEGFR-3. Each VEGFR contains a 750-amino acid-residue extracellular domain that is organized into seven immunoglobulin-like folds. VEGF and VEGFRs have been implicated in angiogenesis in many solid tumors, including breast cancer, colon cancer, hepatoma, bladder cancer, gastric cancer, and prostate cancer (3). VEGFR-2 (220 kDa) is expressed exclusively in endothelial cells in cell differentiation, tumor vascularization, and metastasis. VEGF-A (the original VEGF) binds to the second and third extracellular immunoglobulin G loop of VEGFR-2 with a dissociation constant of ~100 pM (4). Hypoxia appears to be an important stimulus for producing VEGF in malignant and normal endothelial cells (3). Upon binding to its receptor VEGFR-2, VEGF-A elicits a pronounced angiogenic response, so it is considered as a predominant stimulator of angiogenesis. Human VEGF-A has five different isoforms generated by alternative slicing of a single pre-mRNA species, VEGF-A, VEGF-A, VEGF-A, VEGF-A, and VEGF-A, which comprises 121,145,165, 189, and 206 amino acids, respectively (2). These isoforms differ in their ability to bind to heparin sulfate and extracellular matrix (ECM). Quantum dots (QDs) are semiconductor nanocrystals of 2 to 10 nm in diameter (200–10,000 atoms) that possess a quantum confinement effect (hence the name “quantum dots”) caused by the restriction of electrons and holes in all three dimensions (5, 6). Like classic semiconductors that are composed of two types of atoms from the II/VI or III/V group elements in the periodic table, the nanocrystals have a valence band and a conduction band separated by an energy gap (band gap). Upon excitation, an electron is promoted from the filled valence band to the largely empty conduction band, which creates a positive vacancy “hole” in the valence band. The spatial separation (Bohr radius) of this electron-hole pair (“exciton”) is typically 1 to 10 nm for most semiconductors (6). The quantum confinement arises when one of the dimensions in the nanocrystals becomes comparable to its Bohr radius, these valence/conduction bands are quantized with an energy value that is directly related to the nanocrystal size. Thus, the excitons are confined in a manner similar to a particle-in-the-box problem, leading to a finite band gap and discretization of energy levels. When the electron fills the vacancy in the valence band, light of a certain wavelength is emitted, which corresponds to the respective band gap energy that is a function of nanocrystal size. For instance, the emission wavelength is 550 nm for 3-nm CdSe QDs and 650 nm for 7-nm CdSe QDs (7). The wavelength is also a function of semiconductor compositions, i.e., 5-nm CdTe has an emission wavelength of 700 nm, which is much higher than the 620 nm for 5-nm CdSe (8). QDs are 100 to 1,000 times more stable against photobleaching and are 10 to 100 times brighter than organic dyes. QDs have relatively long fluorescence lifetime (20–50 ns), which allows for time-resolved detection of their emitted fluorescence. For biological applications, QDs are generally encapsulated with biocompatible polymers that can increase their hydrodynamic diameter as much as two-fold (9). When their size is <5 nm, QDs are quickly cleared by renal filtration, whereas larger particles are more likely to be taken up by the reticuloendothelial system before reaching the targeted disease sites. Thus, after systematic administration, non-targeted QDs and some targeted QDs accumulate in substantial quantities in reticuloendothelial system, including the phagocytic cells in the liver, spleen, lymph nodes, and bone marrow (5). QDs can also accumulate in solid tumor tissue through the enhanced permeability and retention (EPR) effect regardless of whether they are conjugated with targeting ligands. As a whole, QDs have been widely used in cell trafficking, vasculature imaging, sentinel lymph node mapping, neural imaging, and targeting imaging (5). Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-QD-VEGF factor (Cu-DOTA-QD-VEGF) is a multimodal agent used for imaging VEGFRs with positron emission tomography (PET) and near-infrared (NIFR) optical imaging (10). Cu-DOTA-QD-VEGF consists of three components. An amine-functionalized QD (QD705) is used as a NIFR sensor and as a platform for carrying target-specific ligands. VEGF proteins are attached to the surface of QDs for recognition of VEGFRs. Complexes of the macrocyclic chelating agent DOTA with Cu(II) (Cu-DOTA) are also covalently attached to the surface of QDs. Cu is a positron-emitting radionuclide with an intermediate half-life (12.7 h) that decays by positron (β) with a branching factor of 17.4% and a maximum β energy of 0.653 MeV (11). Cu has been used as a radiotracer in PET imaging and as a radiotherapy agent in cancer treatment. QD705, which is commercially available, comprises a CdTe core shell with a thin layer of ZnS and polyethylene glycol (PEG2000)-attached amine groups (12). The emission wavelength of QD705 (705 nm) is located in the NIRF region (700–900 nm) where the absorbance of all biomolecules reaches a minimum (10). The use of a ZnS shell can increase the quantum yield of CdTe up to 30% to 50% (5). The PEG is used to decrease surface charge, increase colloidal stability of QDs, and reduce non-specific binding of QDs (13). Although QDs are used to examine cellular alteration, their detection is limited by the penetration depth of light. Thus, PET as a highly sensitive and quantitative modality can provide complementary information about tissues in depth. This PET/NIRF dual-modality probe may combine the advantages of QD optical imaging and PET imaging to assess the pharmacokinetics and targeting efficacy of QDs.
血管内皮生长因子(VEGF),也被称为血管通透性因子,是一种同型二聚体糖蛋白,重量约为45 kDa(1)。VEGF家族由六组组成:VEGF - A、- B、- C、- D、- E和胎盘生长因子(PIGF)(2)。在结构上,VEGFs与血小板衍生生长因子(PDGF)相关,它们都含有被称为半胱氨酸结基序的特征性八个半胱氨酸残基(3)。链内和链间二硫键在这些保守位置的半胱氨酸残基之间形成(2)。VEGFs特异性结合三种细胞表面受体酪氨酸激酶,包括fms样酪氨酸激酶 - 1(Flt - 1)或VEGF受体 - 1(VEGFR - 1)、含激酶插入结构域的受体(KDR)或VEGRF - 2以及Flt - 4或VEGFR - 3。每个VEGFR都包含一个750个氨基酸残基的细胞外结构域,该结构域被组织成七个免疫球蛋白样折叠。VEGF和VEGFRs在许多实体瘤的血管生成中起作用,包括乳腺癌、结肠癌、肝癌、膀胱癌、胃癌和前列腺癌(3)。VEGFR - 2(约220 kDa)仅在内皮细胞中表达,参与细胞分化、肿瘤血管形成和转移。VEGF - A(最初的VEGF)以约100 pM的解离常数与VEGFR - 2的第二个和第三个细胞外免疫球蛋白G环结合(4)。缺氧似乎是恶性和正常内皮细胞中产生VEGF的重要刺激因素(3)。与受体VEGFR - 2结合后,VEGF - A引发明显的血管生成反应,因此它被认为是血管生成的主要刺激因子。人VEGF - A通过单个前体mRNA的可变剪接产生五种不同的异构体,VEGF - A121、VEGF - A145、VEGF - A165、VEGF - A189和VEGF - A206,分别包含121、145、165、189和206个氨基酸(2)。这些异构体在与硫酸乙酰肝素和细胞外基质(ECM)结合的能力上有所不同。量子点(QDs)是直径为2至10 nm(200 - 10,000个原子)的半导体纳米晶体,具有量子限制效应(因此得名“量子点”),这是由电子和空穴在所有三个维度上的限制引起的(5, 6)。与由周期表中II/VI或III/V族元素的两种类型原子组成的经典半导体一样,纳米晶体具有由能隙(带隙)分隔的价带和导带。激发后,一个电子从充满的价带跃迁到基本上空的导带,这在价带中产生一个正空位“空穴”。对于大多数半导体,这种电子 - 空穴对(“激子”)的空间分离(玻尔半径)通常为1至10 nm(6)。当纳米晶体的一个维度变得与其玻尔半径相当时,就会出现量子限制,这些价带/导带被量子化,其能量值与纳米晶体大小直接相关。因此,激子以类似于盒中粒子问题的方式被限制,导致有限的带隙和能级离散化。当电子填充价带中的空位时,会发射特定波长的光,这对应于作为纳米晶体大小函数的各自带隙能量。例如,3 - nm CdSe量子点的发射波长为550 nm,7 - nm CdSe量子点的发射波长为650 nm(7)。波长也是半导体组成的函数,即5 - nm CdTe的发射波长为700 nm,远高于5 - nm CdSe的620 nm(8)。量子点对光漂白的稳定性比有机染料高100至1000倍,亮度比有机染料高10至100倍。量子点具有相对较长的荧光寿命(20 - 50 ns),这允许对其发射的荧光进行时间分辨检测。对于生物应用,量子点通常用生物相容性聚合物包封,这可以使它们的流体动力学直径增加多达两倍(9)。当它们的尺寸小于5 nm时,量子点会通过肾脏过滤迅速清除,而较大的颗粒在到达靶向疾病部位之前更有可能被网状内皮系统摄取。因此,经系统给药后,非靶向量子点和一些靶向量子点会大量积聚在网状内皮系统中,包括肝脏、脾脏、淋巴结和骨髓中的吞噬细胞(5)。无论是否与靶向配体缀合,量子点都可以通过增强的通透性和滞留(EPR)效应积聚在实体瘤组织中。总体而言,量子点已广泛用于细胞运输、血管成像、前哨淋巴结定位、神经成像和靶向成像(5)。铜 - 1,4,7,10 - 四氮杂环十二烷 - 1,4,7,10 - 四乙酸 - 量子点 - VEGF因子(Cu - DOTA - QD - VEGF)是一种多模态试剂,用于通过正电子发射断层扫描(PET)和近红外(NIFR)光学成像对VEGFRs进行成像(10)。Cu - DOTA - QD - VEGF由三个部分组成。胺功能化量子点(QD705)用作NIFR传感器和携带靶特异性配体的平台。VEGF蛋白附着在量子点表面以识别VEGFRs。大环螯合剂DOTA与铜(II)(Cu - DOTA)的复合物也共价附着在量子点表面。铜是一种发射正电子的放射性核素,半衰期适中(12.7 h),通过发射正电子(β)衰变,分支因子为17.4%,最大β能量为0.653 MeV(11)。铜已被用作PET成像中的放射性示踪剂和癌症治疗中的放射治疗剂。市售的QD705由具有薄ZnS层和附着有聚乙二醇(PEG2000)胺基的CdTe核壳组成(12)。QD705的发射波长(705 nm)位于NIRF区域(700 - 900 nm),在此区域所有生物分子的吸光度达到最小值(10)。使用ZnS壳可以将CdTe的量子产率提高到30%至50%(5)。PEG用于降低表面电荷、增加量子点的胶体稳定性并减少量子点的非特异性结合(13)。尽管量子点用于检查细胞变化,但其检测受光穿透深度的限制。因此,PET作为一种高度灵敏和定量的模态可以提供关于深部组织的补充信息。这种PET/NIRF双模态探针可以结合量子点光学成像和PET成像的优点,以评估量子点的药代动力学和靶向疗效。