Suppr超能文献

包埋的环(精氨酸-甘氨酸-酪氨酸(甲基)-赖氨酸-谷氨酸)微泡

Buried cyclo(Arg-Gly-Tyr(Me)-Lys-Glu) microbubbles

作者信息

Zhang Huiming

机构信息

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,

Abstract

Microbubbles (MBs) are an aqueous suspension of a hydrophobic gas (perfluorocarbon or sulfur hexafluoride) encapsulated with stabilized shells of lipids, proteins, surfactants, or biocompatible polymers layer (1). The inherent material properties (density and compressibility) generate different speeds of sound in the gas core and the surrounding fluid (2). This leads to a mismatch in acoustic impedance on an order of 10,000, whereas the mismatch between different physiological tissues is around 1% (2). Ultrasound images are reconstructed from tissue-reflected echoes (backscatter) with an amplitude proportional to the impedance mismatch (3). The substantial mismatch between the echogenic MBs and the tissues allows for imaging vasculatures at high sensitivity (4). MBs that are 1–5 μm in diameter exhibit flow characteristics similar to erythrocytes in the blood stream (2). MBs can survive passage through the pulmonary vasculatures and the smallest capillaries (3), and they are removed from the circulation through filtration by the reticuloendothelial system and engulfment by the phagocytic cells (2). Because they are confined to the vascular system, MBs are designed to target the receptors expressed in diseased endothelial cells, including vascular endothelial growth factor receptor 2 (VEGFR2) and αβ integrins (angiogenesis), intracellular adhesion molecule 1 (ICAM1) (inflammation), and fibrinogen receptor GPIIb/IIIa (thrombosis) (5). These targeted MBs have various molecular probes attached on the shell surface, such as proteins, peptides, antibodies, and biotin-avidin complexes. Nevertheless, the presence of these probes may trigger immune activation and can lead to accelerated blood clearance (6). Thus, avoidance of an immunogenic response becomes important to the targeted MBs for minimizing hypersensitivity and enhancing accumulation at the target (7). A new architecture of the encapsulated shell has been developed for protecting recognition of ligands until they reach the target. This new architecture has utilized the ultrasound radiation force (USRF), also called Bjerknes force, produced from the interactions of the MBs with the ultrasound wave (7, 8). Under ultrasound, MBs experience a large net radiation force in the direction of ultrasound wave propagation (8). The use of a cycling ultrasound pulse can deflect MBs over a distance of several millimeters as the result of the primary USRF, which concentrates the MBs near a vessel wall (8). At the same time, a secondary USRF that is present between individual MBs causes MBs to attract each other and accumulate along the vessel wall (8). Thus, the use of ultrasound pulse can facilitate the localization of targeted MBs along vessel walls, which has demonstrated a 20-fold improvement in the efficiency of MB adhesion (6). MBs with buried-ligand shell architecture (BLA) respond to the ultrasound differently compared to normal MBs (with the exposed ligand shell architecture (eRGD-MBs)) (9). BLA contain ligands that are tethered to the MB surface by polyethylene glycol (PEG) molecules and buried in a PEG overbrush (PEG with a much longer chain) (9). Without ultrasound, the buried ligands are concealed from blood components such as opsonins and phagocytes. The ultrasound-produced USRF can cause the forward movement of the MB mass center and the expansion of the encapsulated shell, which reveals the ligand to the target epitopes (7). This allows the targeting ligands to be hidden from the milieu until they reach the target site. Once they arrive at the target, the ultrasound pulse can be used to expose of the surface ligands and facilitate the adhesion of MBs. This protocol also reduces the nonspecific interactions between the ligands and the blood pool agents, maintains targeted agent viability, and reduces MB immunogenicity (9). Buried cyclo(Arg-Gly-Tyr(Me)-Lys-Glu) MBs (bRGD-MBs) comprise a BLA type of ultrasound contrast agent that targets the αβ integrin receptors in endothelial cells (7). bRGD-MBs consist of perfluorobutane as the gas core, and distearoyl phosphatidylcholines (DSPC) and PEG conjugated distearoyl phosphatidylethanolamine (DSPE-PEG) as the encapsulated shell. The ligand RGD, which is the cell-recognition motif that is widely used to target the αβ integrin (10), is covalently attached to the surface of the shell and buried in a PEG overbrush (PEG5k). The PEG5k is roughly three times thicker than the ligand-bearing inner layer and thus provides sufficient concealment for the ligands (9). This design can be extended to a variety of probes by adapting their surface characteristics to the microenvironment.

摘要

微泡(MBs)是一种疏水性气体(全氟化碳或六氟化硫)的水悬浮液,其被脂质、蛋白质、表面活性剂或生物相容性聚合物层的稳定壳包裹(1)。其固有的材料特性(密度和可压缩性)在气体核心和周围流体中产生不同的声速(2)。这导致声阻抗失配达到10000左右,而不同生理组织之间的失配约为1%(2)。超声图像是根据组织反射回波(反向散射)重建的,其幅度与阻抗失配成正比(3)。回声微泡与组织之间的显著失配使得能够以高灵敏度对脉管系统进行成像(4)。直径为1 - 5μm的微泡表现出与血流中红细胞相似的流动特性(2)。微泡能够在通过肺脉管系统和最小的毛细血管后存活(3),并且它们通过网状内皮系统的过滤和吞噬细胞的吞噬作用从循环中清除(2)。由于微泡局限于血管系统,它们被设计用于靶向病变内皮细胞中表达的受体,包括血管内皮生长因子受体2(VEGFR2)和αβ整合素(血管生成)、细胞间黏附分子1(ICAM1)(炎症)以及纤维蛋白原受体GPIIb/IIIa(血栓形成)(5)。这些靶向微泡在壳表面附着有各种分子探针,如蛋白质、肽、抗体和生物素 - 抗生物素蛋白复合物。然而,这些探针的存在可能触发免疫激活并导致血液清除加速(6)。因此,对于靶向微泡而言,避免免疫原性反应对于最小化超敏反应并增强在靶部位的积累变得很重要(7)。已经开发出一种新的封装壳结构,用于在配体到达靶标之前保护其识别功能。这种新结构利用了微泡与超声波相互作用产生的超声辐射力(USRF),也称为 Bjerknes 力(7, 8)。在超声作用下,微泡在超声波传播方向上经历较大的净辐射力(8)。使用循环超声脉冲可使微泡由于初级 USRF 而在几毫米的距离上发生偏转,这将微泡集中在血管壁附近(8)。同时,单个微泡之间存在的次级 USRF 使微泡相互吸引并沿血管壁聚集(8)。因此,使用超声脉冲可促进靶向微泡沿血管壁的定位,这已证明微泡黏附效率提高了20倍(6)。具有埋藏配体壳结构(BLA)的微泡与正常微泡(具有暴露配体壳结构(eRGD - MBs))相比,对超声的反应不同(9)。BLA 包含通过聚乙二醇(PEG)分子连接到微泡表面并埋藏在 PEG 超支化结构(具有更长链的 PEG)中的配体(9)。在没有超声的情况下,埋藏的配体对诸如调理素和吞噬细胞等血液成分是隐蔽的。超声产生的 USRF 可导致微泡质心向前移动以及封装壳的膨胀,从而使配体暴露于靶表位(7)。这使得靶向配体在到达靶位点之前对周围环境隐蔽。一旦它们到达靶标,超声脉冲可用于暴露表面配体并促进微泡的黏附。该方案还减少了配体与血池剂之间的非特异性相互作用,维持了靶向剂的活力,并降低了微泡的免疫原性(9)。埋藏环(精氨酸 - 甘氨酸 - 酪氨酸(甲基) - 赖氨酸 - 谷氨酸)微泡(bRGD - MBs)构成一种靶向内皮细胞中αβ整合素受体的BLA型超声造影剂(7)。bRGD - MBs 以全氟丁烷作为气体核心,以二硬脂酰磷脂酰胆碱(DSPC)和 PEG 共轭二硬脂酰磷脂酰乙醇胺(DSPE - PEG)作为封装壳。配体 RGD 是广泛用于靶向αβ整合素的细胞识别基序(10),它共价连接到壳表面并埋藏在 PEG 超支化结构(PEG5k)中。PEG5k 比带有配体的内层大约厚三倍,因此为配体提供了足够的隐蔽性(9)。通过使它们的表面特性适应微环境,这种设计可以扩展到多种探针。

相似文献

3
Monodispersity Increases Adhesion Efficiency and Specificity for Ultrasound-Targeted Microbubbles.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):991-1001. doi: 10.1021/acsbiomaterials.2c00528. Epub 2022 Sep 26.
6
Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.
Langmuir. 2010 Aug 17;26(16):13183-94. doi: 10.1021/la101796p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验