Nayak Gauri H, Prentice Howard M, Milton Sarah L
Department of Biology, Boston University, Boston, Massachusetts 02215, USA.
J Cereb Blood Flow Metab. 2011 Feb;31(2):467-75. doi: 10.1038/jcbfm.2010.109. Epub 2010 Jul 21.
Cumulative evidence shows a protective role for adenosine A1 receptors (A1R) in hypoxia/ischemia; A1R stimulation reduces neuronal damage, whereas blockade exacerbates damage. The signal transduction pathways may involve the mitogen-activated protein kinase (MAPK) pathways and serine/threonine kinase (AKT), with cell survival depending on the timing and degree of upregulation of these cascades as well as the balance between pro-survival and pro-death pathways. Here, we show in vitro that extracellular signal-regulated kinase (ERK1/2) and phosphatidylinositol 3-kinase (PI3-K/AKT) activation is dependent on A1R stimulation, with further downstream effects that promote neuronal survival. Phosphorylated ERK1/2 (p-ERK) and AKT (p-AKT) as well as Bcl-2 are upregulated in anoxic neuronally enriched primary cultures from turtle brain. This native upregulation is further increased by the selective A1R agonist 2-chloro-N-cyclopentyladenosine (CCPA), whereas the selective antagonist 8-cyclopentyl-1,3-dihydropylxanthine (DPCPX) decreases p-ERK and p-AKT expression. Conversely, A1R antagonism resulted in increases in phosphorylated JNK (p-JNK), p38 (p-p38), and Bax. As pathological and adaptive changes occur simultaneously during anoxia/ischemia in mammalian neurons, the turtle provides an alternative model to analyze protective mechanisms in the absence of evident pathologies.
累积证据表明腺苷 A1 受体(A1R)在缺氧/缺血中具有保护作用;刺激 A1R 可减少神经元损伤,而阻断该受体则会加剧损伤。信号转导途径可能涉及丝裂原活化蛋白激酶(MAPK)途径和丝氨酸/苏氨酸激酶(AKT),细胞存活取决于这些级联反应上调的时间和程度以及促生存和促死亡途径之间的平衡。在此,我们在体外表明细胞外信号调节激酶(ERK1/2)和磷脂酰肌醇 3-激酶(PI3-K/AKT)的激活依赖于 A1R 刺激,并具有促进神经元存活的进一步下游效应。在来自龟脑的缺氧神经元丰富的原代培养物中,磷酸化的 ERK1/2(p-ERK)、AKT(p-AKT)以及 Bcl-2 上调。选择性 A1R 激动剂 2-氯-N-环戊基腺苷(CCPA)进一步增加了这种天然上调,而选择性拮抗剂 8-环戊基-1,3-二氢嘌呤(DPCPX)则降低了 p-ERK 和 p-AKT 的表达。相反,A1R 拮抗作用导致磷酸化的 JNK(p-JNK)、p38(p-p38)和 Bax 增加。由于在哺乳动物神经元缺氧/缺血期间病理和适应性变化同时发生,龟提供了一个在没有明显病理情况下分析保护机制的替代模型。