Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1135-45. doi: 10.1152/ajpheart.00186.2010. Epub 2010 Jul 23.
Isoproterenol increases phosphorylation of LKB, 5'-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O(2) consumption (in J·g dry wt(-1)·min(-1); 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol·g dry wt(-1)·min(-1); 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol·g dry wt(-1)·min(-1); 253 ± 75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation.
异丙肾上腺素增加 LKB、5'-AMP 激活的蛋白激酶 (AMPK) 和乙酰辅酶 A 羧化酶 (ACC) 的磷酸化,这些酶参与调节脂肪酸氧化。然而,在体心脏收缩力刺激选择性增加成年心脏的葡萄糖氧化。在新生儿心脏中,脂肪酸氧化成为主要的能量来源,而葡萄糖氧化仍然很低。本研究检验了以下假设:异丙肾上腺素引起的能量需求增加源于脂肪酸氧化,这是由于 LKB、AMPK 和 ACC 磷酸化增加所致。用 Krebs 溶液(0.4 mM 棕榈酸酯、11 mM 葡萄糖、0.5 mM 乳酸盐和 100 mU/l 胰岛素)灌注来自 7 天大的兔子的工作心脏,同时或不使用异丙肾上腺素(300 nM)。异丙肾上腺素增加心肌 O2 消耗(在 J·g 干重·min-1;11.0 ± 1.4,n = 8 对 7.5 ± 0.8,n = 6,P < 0.05),并增加 LKB(在任意密度单位;0.87 ± 0.09,n = 6 对 0.59 ± 0.08,n = 6,P < 0.05)、AMPK(0.82 ± 0.08,n = 6 对 0.51 ± 0.06,n = 6,P < 0.05)和 ACC-β(1.47 ± 0.14,n = 6 对 0.97 ± 0.07,n = 6,P < 0.05)的磷酸化,同时降低丙二酰辅酶 A 水平(在 nmol/g 干重;0.9 ± 0.9,n = 8 对 7.5 ± 1.3,n = 8,P < 0.05)和增加棕榈酸酯氧化(在 nmol·g 干重·min-1;272 ± 45,n = 8 对 114 ± 9,n = 6,P < 0.05)。葡萄糖和乳酸盐氧化增加(在 nmol·g 干重·min-1;253 ± 75,n = 8 对 63 ± 15,n = 9,P < 0.05 和 246 ± 43,n = 8 对 82 ± 11,n = 6,P < 0.05,分别),独立于丙酮酸脱氢酶磷酸化的改变,但发生在乙酰辅酶 A 含量和乙酰辅酶 A-游离辅酶 A 比降低的基础上。由于异丙肾上腺素引起的乙酰辅酶 A 水平下降,尽管棕榈酸酯和碳水化合物氧化的速率加快,但这些数据表明乙酰辅酶 A 的净利用率超过了乙酰辅酶 A 的净生成率。
Am J Physiol Heart Circ Physiol. 2010-7-23
Am J Physiol Heart Circ Physiol. 2000-4
Am J Physiol Heart Circ Physiol. 2010-2-12
J Biol Chem. 1993-12-5
Can J Physiol Pharmacol. 2006-11
J Cell Sci. 2015-5-19
Proc Natl Acad Sci U S A. 2011-9-6