Computing Laboratory, University of Oxford and John Radcliffe Hospital, Oxford, United Kingdom.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1045-63. doi: 10.1152/ajpheart.00219.2010. Epub 2010 Jul 23.
Mathematical modeling of Ca(2+) dynamics in the heart has the potential to provide an integrated understanding of Ca(2+)-handling mechanisms. However, many previous published models used heterogeneous experimental data sources from a variety of animals and temperatures to characterize model parameters and motivate model equations. This methodology limits the direct comparison of these models with any particular experimental data set. To directly address this issue, in this study, we present a biophysically based model of Ca(2+) dynamics directly fitted to experimental data collected in left ventricular myocytes isolated from the C57BL/6 mouse, the most commonly used genetic background for genetically modified mice in studies of heart diseases. This Ca(2+) dynamics model was then integrated into an existing mouse cardiac electrophysiology model, which was reparameterized using experimental data recorded at consistent and physiological temperatures. The model was validated against the experimentally observed frequency response of Ca(2+) dynamics, action potential shape, dependence of action potential duration on cycle length, and electrical restitution. Using this framework, the implications of cardiac Na(+)/Ca(2+) exchanger (NCX) overexpression in transgenic mice were investigated. These simulations showed that heterozygous overexpression of the canine cardiac NCX increases intracellular Ca(2+) concentration transient magnitude and sarcoplasmic reticulum Ca(2+) loading, in agreement with experimental observations, whereas acute overexpression of the murine cardiac NCX results in a significant loss of Ca(2+) from the cell and, hence, depressed sarcoplasmic reticulum Ca(2+) load and intracellular Ca(2+) concentration transient magnitude. From this analysis, we conclude that these differences are primarily due to the presence of allosteric regulation in the canine cardiac NCX, which has not been observed experimentally in the wild-type mouse heart.
心脏钙离子动力学的数学建模有可能提供对钙离子处理机制的综合理解。然而,许多以前发表的模型使用了来自各种动物和温度的异质实验数据源来表征模型参数并激发模型方程。这种方法限制了这些模型与任何特定实验数据集的直接比较。为了直接解决这个问题,在本研究中,我们提出了一个直接拟合于从 C57BL/6 小鼠分离的左心室心肌细胞中收集的实验数据的钙离子动力学的生物物理模型,C57BL/6 是研究心脏疾病的基因修饰小鼠中最常用的遗传背景。然后,将这个钙离子动力学模型集成到一个现有的小鼠心脏电生理学模型中,该模型使用在一致和生理温度下记录的实验数据进行了重新参数化。该模型通过实验观察到的钙离子动力学的频率响应、动作电位形状、动作电位持续时间对循环长度的依赖性和电折返进行了验证。使用这个框架,研究了转基因小鼠中心脏钠钙交换体(NCX)过表达的影响。这些模拟表明,犬心脏 NCX 的杂合过表达增加了细胞内钙离子浓度瞬变幅度和肌浆网钙离子加载,这与实验观察结果一致,而鼠心脏 NCX 的急性过表达导致细胞内钙离子的大量损失,因此,肌浆网钙离子加载和细胞内钙离子浓度瞬变幅度降低。从这个分析中,我们得出结论,这些差异主要是由于犬心脏 NCX 中的变构调节的存在,这种调节在野生型小鼠心脏中尚未被实验观察到。