Suppr超能文献

仿生膜中的主要内在蛋白。

Major intrinsic proteins in biomimetic membranes.

机构信息

Quantrum Protein Center, Department of Physics, Technical University of Denmark, DK-2800 Lyngby.

出版信息

Adv Exp Med Biol. 2010;679:127-42. doi: 10.1007/978-1-4419-6315-4_10.

Abstract

Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design ofbiomimetic membranes capable of supporting selective transmembrane fluxes.

摘要

生物膜定义了活细胞及其细胞器的结构和功能边界。细胞的完整性取决于它将内部与外部隔离开来的能力,同时又允许大量物质进出细胞。大自然通过形成脂质双层的方式来应对这一挑战,在这种双层中嵌入了专门的转运蛋白。这就提出了一个问题:是否可以模拟生物膜并创建基于膜的传感器和/或分离设备?在仿生传感器/分离技术的发展中,一类独特的膜转运蛋白特别有趣——主要内在蛋白(MIP)。通常,MIP 可将水分子和选定的溶质进出细胞,同时阻止其他溶质的通过,这一特性对于细胞内部 pH 值和盐浓度的维持至关重要。它们也被称为水通道或水孔蛋白,是高效的膜孔蛋白,其中一些能够以非常高的速率(高达每秒 10^9 个分子)运输水。一些 MIP 还可以运输其他小的、不带电荷的溶质,如甘油和其他渗透物,如二氧化碳、一氧化氮、氨、过氧化氢和类金属亚锑酸盐、亚砷酸盐、硅酸和硼酸,具体取决于蛋白质的有效限制机制。MIP 的通量特性引发了这样一个问题,即 MIP 是否可以用于分离设备或作为基于例如类金属选择性渗透的传感器设备。原则上,基于 MIP 的膜传感器/分离装置需要支撑的仿生基质几乎对除水或所研究的溶质之外的任何物质都不可渗透。然而,在实践中,仿生支撑基质通常对电解质和非电解质都具有有限的渗透性。因此,仿生 MIP 装置的可行性取决于蛋白质和仿生支撑基质的相对传输贡献。此外,为了保护仿生基质并使其在最终应用中足够稳定,还必须对其进行封装。在这里,我特别讨论了开发渗透仿生 MIP 膜的可行性,但在设计能够支持选择性跨膜通量的仿生膜时,这些技术问题普遍存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验