Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-nishihirakicho, Kyoto 606-8103, Japan.
J Phys Chem A. 2010 Aug 19;114(32):8190-201. doi: 10.1021/jp103253b.
The dynamics of the photoisomerization of a model protonated Schiff base of 9-cis retinal in isorhodopsin is investigated using nonadiabatic molecular dynamics simulation combined with ab initio quantum chemical calculations on-the-fly. The quantum chemical part is treated at the complete-active space self-consistent field level for six electrons in six active pi orbitals with the 6-31G basis set (CASSCF(6,6)/6-31G). The probabilities of nonadiabatic transitions between the S(1) ((1)pipi*) and S(0) states are estimated in light of the Zhu-Nakamura theory. The photoinduced cis-trans isomerization of 9-cis retinal proceeds slower than that of its 11-cis analogue and at a lower quantum yield, confirming experimental observations. An energetic barrier in the excited state impedes the elongation and twist of the C(9)=C(10) stretch and torsion coordinates, respectively, resulting in the trapping of trajectories before transition. Consequently, the isomerization takes longer time and the transition more often occurs at smaller twist angle of =C(8)-C(9)=C(10)-C(11)=, which leads to regeneration of the 9-cis reactant. Thus, neither the smaller twist observed in the X-ray crystal nor the slower movement of nuclei in the transition region would be the main reason for the longer reaction time and lower yield. A well-known space-saving asynchronous bicycle pedal or crankshaft photoisomerization mechanism is found to be operational in 9-cis retinal. The simulation in vacuo suggests that the excited-state barrier and the photoisomerization itself are intrinsic properties of the visual chromophore and not triggered mainly by the protein environment that surrounds the chromophore.
使用非绝热分子动力学模拟结合在线从头算量子化学计算,研究了 9-顺视黄醛质子化席夫碱在异构视紫红质中的光异构化动力学。量子化学部分在六电子六活性π轨道上用 6-31G 基组(CASSCF(6,6)/6-31G)处理,采用完全活性空间自洽场水平。根据 Zhu-Nakamura 理论,估算了 S(1)((1)pipi*)和 S(0)态之间非绝热跃迁的概率。9-顺式视黄醛的光致顺反异构化比其 11-顺式类似物慢,量子产率也较低,这与实验观察结果一致。激发态中的能垒阻碍了 C(9)=C(10)伸缩和扭曲坐标的伸长和扭曲,分别导致了跃迁前轨迹的捕获。因此,异构化需要更长的时间,跃迁更常发生在较小的扭曲角 =C(8)-C(9)=C(10)-C(11)=,这导致 9-顺式反应物的再生。因此,在 X 射线晶体中观察到的较小扭曲或在跃迁区域中核的较慢运动都不是反应时间较长和产率较低的主要原因。发现了一种众所周知的节省空间的异步自行车踏板或曲柄光异构化机制在 9-顺式视黄醛中起作用。真空中的模拟表明,激发态势垒和光异构化本身是视觉色素的固有特性,而不是主要由周围的蛋白质环境触发的。