Department of Physical Chemistry, Faculty of Chemistry, University of Seville. c/Profesor García González, s/n, 41012. Seville, Spain.
J Phys Chem A. 2010 Aug 5;114(30):7912-7. doi: 10.1021/jp104681n.
The diffusion-controlled electron transfer rate constants (k(d)) of several quenching reactions of ruthenium complexes Ru(L)(3) (L = bpy, phen, and 4,7-(CH(3))(2)phen) with Fe(CN)(6) were experimentally determined at different concentrations of NaNO(3). From these rate constants, the effective values of viscosity coefficients for NaNO(3) solutions were calculated using EMSA (exponential mean spherical approximation) and EF (Eigen-Fuoss) approaches in order to take into account the mean force potential between reactants. The reliability of the effective parameters were checked through calculations of the rate constants of the reaction IrCl(6)+ Ru(bpy)(3)* in these NaNO(3) solutions. The rate constants of this reaction were also obtained by fluorescence quenching measurements. The agreement between the two sets of data (experimental and predicted) is excellent. The trends of association (k(d)) and dissociation (k(-d)) rate constants for 2+/3-, 2+/2-, and 2+/2+ reactions in NaNO(3) solutions are discussed. The use of effective diffusion coefficients for estimating k(d) and k(-d) allowed us to obtain the intrinsic electron transfer rate constant (k(et)) for the activation-diffusion-controlled process between Ru(bpy)(3)* and Co(NH(3))(5)Cl complexes from the observed (quenching) rate constant. The trend of electron-transfer rate constant in NaNO(3) for this reaction was rationalized by using the Marcus electron-transfer treatment.
几种钌配合物Ru(L)(3)(L = bpy、phen 和 4,7-(CH(3))(2)phen)与Fe(CN)(6)的猝灭反应的扩散控制电子转移速率常数(k(d))在不同浓度的 NaNO(3)下进行了实验测定。从这些速率常数中,使用 EMSA(指数平均球近似)和 EF(Eigen-Fuoss)方法计算了 NaNO(3)溶液的有效粘度系数值,以考虑反应物之间的平均力势能。通过在这些 NaNO(3)溶液中计算反应IrCl(6)+Ru(bpy)(3)*的速率常数来检查有效参数的可靠性。该反应的速率常数也通过荧光猝灭测量获得。这两组数据(实验和预测)之间的一致性非常好。讨论了 2+/3-、2+/2-和 2+/2+反应在 NaNO(3)溶液中的缔合(k(d))和离解(k(-d))速率常数的趋势。使用有效扩散系数来估计 k(d)和 k(-d),使我们能够从观察到的(猝灭)速率常数获得Ru(bpy)(3)*和Co(NH(3))(5)Cl配合物之间的活化扩散控制过程的固有电子转移速率常数(k(et))。通过使用 Marcus 电子转移处理,对该反应在 NaNO(3)中的电子转移速率常数趋势进行了合理化解释。