Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada.
Mutat Res. 2010 Dec;705(3):228-38. doi: 10.1016/j.mrrev.2010.07.002. Epub 2010 Aug 3.
In model DNA, A pairs with T, and C with G. However, in vivo, the complementarity of the DNA strands may be disrupted by errors in DNA replication, biochemical modification of bases and recombination. In prokaryotic organisms, mispaired bases are recognized by MutS homologs which, together with MutL homologs, initiate mismatch repair. These same proteins also participate in base excision repair and nucleotide excision repair. In eukaryotes they regulate not just DNA repair but also meiotic recombination, cell-cycle delay and/or apoptosis in response to DNA damage, and hypermutation in immunoglobulin genes. Significantly, the same DNA mismatches that trigger repair in some circumstances trigger non-repair pathways in others. In this review, we argue that mismatch recognition by the MutS proteins is linked to these disparate biological outcomes through regulated interaction of MutL proteins with a wide variety of effector proteins.
在模型 DNA 中,A 与 T 配对,C 与 G 配对。然而,在体内,DNA 链的互补性可能会因 DNA 复制错误、碱基的生化修饰和重组而中断。在原核生物中,错配碱基被 MutS 同源物识别,MutS 同源物与 MutL 同源物一起启动碱基错配修复。这些相同的蛋白质也参与碱基切除修复和核苷酸切除修复。在真核生物中,它们不仅调节 DNA 修复,还调节有丝分裂重组、细胞周期延迟和/或对 DNA 损伤的细胞凋亡,以及免疫球蛋白基因的超突变。重要的是,在某些情况下引发修复的相同 DNA 错配在其他情况下会引发非修复途径。在这篇综述中,我们认为 MutS 蛋白对碱基错配的识别通过 MutL 蛋白与各种效应蛋白的调控相互作用与这些不同的生物学结果相关。