Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
Carbohydr Res. 2010 Sep 3;345(13):1945-51. doi: 10.1016/j.carres.2010.07.008.
Previously, theoretical multiple sugar (beta-d-xylose and beta-d-glucose) reaction pathways were discovered that depended on the initial protonation site on the sugar molecules using Car-Parrinello-based molecular dynamics (CPMD) simulations [Qian, X. H.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Carbohydr. Res.2005, 340, 2319-2327]. In addition, simulation results showed that water molecules could participate in the sugar reactions, thus altering the reaction pathways. In the present study, the temperature and water density effects on the sugar degradation pathways were investigated with CPMD. We found that changes in both temperature and water density could profoundly affect the mechanisms and pathways. We attributed these effects to both the strength of hydrogen bonding and proton affinity of water.
先前,通过 Car-Parrinello 分子动力学 (CPMD) 模拟,发现了依赖于糖分子初始质子化位置的理论多糖(β-D-木糖和β-D-葡萄糖)反应途径[Qian, X. H.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Carbohydr. Res.2005, 340, 2319-2327]。此外,模拟结果表明,水分子可以参与糖反应,从而改变反应途径。在本研究中,使用 CPMD 研究了温度和水密度对糖降解途径的影响。我们发现,温度和水密度的变化都会深刻影响反应机制和途径。我们将这些影响归因于氢键的强度和水的质子亲和力。