Suppr超能文献

反应中心环突变试验中丝氨酸蛋白酶抑制剂聚合的环套机制。

Loop-sheet mechanism of serpin polymerization tested by reactive center loop mutations.

机构信息

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom.

出版信息

J Biol Chem. 2010 Oct 1;285(40):30752-8. doi: 10.1074/jbc.M110.156042. Epub 2010 Jul 28.

Abstract

The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable "loop-inserted" conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the "loop-sheet" hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α(1)-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8-P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α(1)-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8-P6 region is only a small part of an extensive domain swap.

摘要

丝氨酸蛋白酶抑制剂的 Serpin 机制涉及到活性中心环 (RCL) 的快速和稳定插入到中央 β-折叠 A 中。因此,Serpins 需要一种折叠机制,该机制绕过最稳定的“环插入”构象,将 RCL 捕获在暴露的亚稳定状态中。Serpins 的这种不寻常特征使它们极易受到点突变的影响,这些突变导致在分泌细胞的内质网中积累超稳定的错误折叠聚合物。Serpin 聚合物中有序和稳定的单体-单体缔合导致了聚合的“环-片”假说的接受,其中一个单体的 RCL 的一部分按顺序并入另一个单体的 A 片。尽管该机制在 20 年前就已提出,但从未有研究进行过测试其有效性。在这里,我们描述了一种 α(1)-抗胰蛋白酶变体的特性,该变体的 RCL 的关键疏水区被天冬氨酸取代(P8-P6)。与对照相比,当用小肽孵育或在 RCL 中间切割时(接受的环-片聚合模型),变体无法聚合。然而,当用盐酸胍或热诱导时,变体以与对照无法区分的方式聚合。重要的是,Asp 突变不影响 Z 或 Siiyama α(1)-抗胰蛋白酶变体在 COS-7 细胞中聚合的能力。这些结果强烈反对环-片假说,并表明在 Serpin 聚合物中,P8-P6 区域只是广泛的结构域交换的一小部分。

相似文献

1
Loop-sheet mechanism of serpin polymerization tested by reactive center loop mutations.
J Biol Chem. 2010 Oct 1;285(40):30752-8. doi: 10.1074/jbc.M110.156042. Epub 2010 Jul 28.
2
Serpin polymerization in vitro.
Methods Enzymol. 2011;501:379-420. doi: 10.1016/B978-0-12-385950-1.00017-1.
4
Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers.
Biol Chem. 2010 Aug;391(8):973-82. doi: 10.1515/BC.2010.085.
5
Reactive Center Loop Insertion in α-1-Antitrypsin Captured by Accelerated Molecular Dynamics Simulation.
Biochemistry. 2017 Jan 31;56(4):634-646. doi: 10.1021/acs.biochem.6b00839. Epub 2017 Jan 17.
7
8
Folding mechanism of the metastable serpin α1-antitrypsin.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4467-72. doi: 10.1073/pnas.1109125109. Epub 2012 Mar 5.
10
Interactions causing the kinetic trap in serpin protein folding.
J Biol Chem. 2002 Nov 29;277(48):46347-54. doi: 10.1074/jbc.M207682200. Epub 2002 Sep 18.

引用本文的文献

2
N-Glycosylation as a Tool to Study Antithrombin Secretion, Conformation, and Function.
Int J Mol Sci. 2021 Jan 6;22(2):516. doi: 10.3390/ijms22020516.
3
Characterisation of a type II functionally-deficient variant of alpha-1-antitrypsin discovered in the general population.
PLoS One. 2019 Jan 11;14(1):e0206955. doi: 10.1371/journal.pone.0206955. eCollection 2019.
4
AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor.
PLoS One. 2016 Mar 23;11(3):e0151902. doi: 10.1371/journal.pone.0151902. eCollection 2016.
5
Small Molecule Probes That Perturb A Protein-protein Interface In Antithrombin.
Chem Sci. 2014 Dec 1;5(12):4914-4921. doi: 10.1039/C4SC01295J.
6
Functional analysis of novel alpha-1 antitrypsin variants G320R and V321F.
Mol Biol Rep. 2014 Sep;41(9):6133-41. doi: 10.1007/s11033-014-3492-z. Epub 2014 Jun 27.
9
Therapeutic target-site variability in α1-antitrypsin characterized at high resolution.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt 12):1492-7. doi: 10.1107/S1744309111040267. Epub 2011 Nov 25.
10

本文引用的文献

1
Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers.
Biol Chem. 2010 Aug;391(8):973-82. doi: 10.1515/BC.2010.085.
3
Kinetic instability of the serpin Z alpha1-antitrypsin promotes aggregation.
J Mol Biol. 2010 Feb 19;396(2):375-83. doi: 10.1016/j.jmb.2009.11.048. Epub 2009 Nov 26.
4
Conformational pathology of the serpins: themes, variations, and therapeutic strategies.
Annu Rev Biochem. 2009;78:147-76. doi: 10.1146/annurev.biochem.78.082107.133320.
5
Protein misfolding and the serpinopathies.
Prion. 2007 Jan-Mar;1(1):15-20. doi: 10.4161/pri.1.1.3974. Epub 2007 Jan 6.
6
Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization.
Nature. 2008 Oct 30;455(7217):1255-8. doi: 10.1038/nature07394. Epub 2008 Oct 15.
7
Shape-shifting serpins--advantages of a mobile mechanism.
Trends Biochem Sci. 2006 Aug;31(8):427-35. doi: 10.1016/j.tibs.2006.06.005. Epub 2006 Jul 3.
8
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
How small peptides block and reverse serpin polymerisation.
J Mol Biol. 2004 Sep 17;342(3):931-41. doi: 10.1016/j.jmb.2004.07.078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验