Suppr超能文献

苯丙氨酸羟化酶的激活诱导了对天然辅因子的正协同作用。

Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor.

机构信息

Department of Molecular Pediatrics, Dr von Hauner Children's Hospital, Munich 80337, Germany.

出版信息

J Biol Chem. 2010 Oct 1;285(40):30686-97. doi: 10.1074/jbc.M110.124016. Epub 2010 Jul 27.

Abstract

Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.

摘要

蛋白质错误折叠,同时酶苯丙氨酸羟化酶(PAH)失去功能,是许多个体携带苯丙氨酸羟化酶基因错义突变的苯丙酮尿症的分子基础。PAH 受到其底物 L-苯丙氨酸和天然辅助因子 6R-L-erythro-5,6,7,8-四氢生物蝶呤(BH4)的复杂调节。盐酸沙丙蝶呤,BH4 的合成形式,最近被批准为第一个纠正功能丧失表型的药理学伴侣。然而,目前对治疗环境中酶功能和调节的了解很少。这说明了需要对稳态动力学和变构作用进行全面分析,超越单一残留酶活性测定,以追溯错义突变对苯丙氨酸羟化系统的结构影响。目前的标准 PAH 活性测定要么是间接的(NADH),要么是不连续的,因为在检测之前需要分离底物和产物。我们开发了一种自动化荧光连续实时 PAH 活性测定法,该方法被证明更快、更高效,但与标准方法一样精确和准确。使用新测定法对野生型 PAH 动力学分析表明,激活的 PAH 对 BH4 具有协同性,这是一个以前未知的发现。对结构上预先激活的变体的分析证实了激活的酶对 BH4 的依赖性协同作用,这种协同作用不依赖于 L-苯丙氨酸的存在,而是由激活的构象重排决定的。这些发现可能对个体化治疗有影响,因为它们支持这样一种假设,即患者的代谢状态对药物与靶蛋白的构象和功能相互作用的影响比目前所认识的更为重要。

相似文献

1
Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor.
J Biol Chem. 2010 Oct 1;285(40):30686-97. doi: 10.1074/jbc.M110.124016. Epub 2010 Jul 27.
3
Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability.
Am J Hum Genet. 2008 Jul;83(1):5-17. doi: 10.1016/j.ajhg.2008.05.013. Epub 2008 Jun 5.
5
Secondary BH4 deficiency links protein homeostasis to regulation of phenylalanine metabolism.
Hum Mol Genet. 2018 May 15;27(10):1732-1742. doi: 10.1093/hmg/ddy079.
6
Phenylalanine hydroxylase: function, structure, and regulation.
IUBMB Life. 2013 Apr;65(4):341-9. doi: 10.1002/iub.1150. Epub 2013 Mar 4.
7
Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency, state of the art.
Mol Genet Metab. 2003 Feb;78(2):93-9. doi: 10.1016/s1096-7192(02)00229-9.
9
New protein structures provide an updated understanding of phenylketonuria.
Mol Genet Metab. 2017 Aug;121(4):289-296. doi: 10.1016/j.ymgme.2017.06.005. Epub 2017 Jun 15.

引用本文的文献

2
Phenylalanine hydroxylase mRNA rescues the phenylketonuria phenotype in mice.
Front Bioeng Biotechnol. 2022 Oct 7;10:993298. doi: 10.3389/fbioe.2022.993298. eCollection 2022.
3
A noncoding RNA modulator potentiates phenylalanine metabolism in mice.
Science. 2021 Aug 6;373(6555):662-673. doi: 10.1126/science.aba4991.
4
Modulation of Human Phenylalanine Hydroxylase by 3-Hydroxyquinolin-2(1H)-One Derivatives.
Biomolecules. 2021 Mar 19;11(3):462. doi: 10.3390/biom11030462.
5
In Silico and In Vitro Tailoring of a Chitosan Nanoformulation of a Human Metabolic Enzyme.
Pharmaceutics. 2021 Mar 4;13(3):329. doi: 10.3390/pharmaceutics13030329.
6
Manipulation of a cation-π sandwich reveals conformational flexibility in phenylalanine hydroxylase.
Biochimie. 2021 Apr;183:63-77. doi: 10.1016/j.biochi.2020.11.011. Epub 2020 Nov 19.
7
New protein structures provide an updated understanding of phenylketonuria.
Mol Genet Metab. 2017 Aug;121(4):289-296. doi: 10.1016/j.ymgme.2017.06.005. Epub 2017 Jun 15.
8
Stabilization of tryptophan hydroxylase 2 by l-phenylalanine-induced dimerization.
FEBS Open Bio. 2016 Aug 22;6(10):987-999. doi: 10.1002/2211-5463.12100. eCollection 2016 Oct.
10
Structural features of the regulatory ACT domain of phenylalanine hydroxylase.
PLoS One. 2013 Nov 14;8(11):e79482. doi: 10.1371/journal.pone.0079482. eCollection 2013.

本文引用的文献

4
Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex.
J Biol Chem. 2008 Nov 14;283(46):31294-302. doi: 10.1074/jbc.M805792200. Epub 2008 Sep 12.
5
Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability.
Am J Hum Genet. 2008 Jul;83(1):5-17. doi: 10.1016/j.ajhg.2008.05.013. Epub 2008 Jun 5.
6
A structural basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc 2-epimerases.
EMBO Rep. 2008 Feb;9(2):199-205. doi: 10.1038/sj.embor.7401154. Epub 2008 Jan 11.
7
Flagellin glycosylation in Pseudomonas aeruginosa PAK requires the O-antigen biosynthesis enzyme WbpO.
J Biol Chem. 2008 Feb 8;283(6):3507-3518. doi: 10.1074/jbc.M708894200. Epub 2007 Dec 7.
8
Rapid determination of enzyme kinetics from fluorescence: overcoming the inner filter effect.
Anal Biochem. 2007 Dec 1;371(1):43-51. doi: 10.1016/j.ab.2007.07.008. Epub 2007 Jul 18.
10
Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria.
J Pediatr. 2007 Jun;150(6):627-30. doi: 10.1016/j.jpeds.2007.02.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验