Suppr超能文献

鼠肝炎病毒复制酶基因中的一个新顺反子。

A new cistron in the murine hepatitis virus replicase gene.

机构信息

Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.

出版信息

J Virol. 2010 Oct;84(19):10148-58. doi: 10.1128/JVI.00901-10. Epub 2010 Jul 28.

Abstract

We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33 degrees C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5 degrees C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.

摘要

我们报告了一株鼠肝炎病毒(MHV)的 RNA 阴性、温度敏感(ts)突变株,Bristol ts31(MHV-Brts31),其定义了 MHV 复制酶基因座内的一个新的互补群。MHV-Brts31 在允许温度 33°C 时具有接近正常水平的 RNA 合成,但在非允许温度 39.5°C 时不能起始和维持病毒 RNA 的合成。MHV-Brts31 RNA 的序列分析表明,ORF1a 中第 1307 位密码子的单个 G 到 A 转换,导致非结构蛋白 3(nsp3)中的甲硫氨酸-475被异亮氨酸取代,是 ts 表型的原因。这一结论通过痘苗病毒为基础的反向遗传学系统产生重组病毒 Bristol tsc31(MHV-Brtsc31)得到了证实,该病毒具有与 MHV-Brts31 相同的 RNA 阴性 ts 表型和互补谱。病毒感染细胞中蛋白质合成的分析表明,在非允许温度下,MHV-Brtsc31 不能进行蛋白酶加工,无论是 p150,即 nsp4 到 nsp10 的复制酶非结构蛋白的前体多肽,还是复制酶多蛋白 pp1ab 以产生 nsp12。复制酶多蛋白 pp1a 在 nsp1 到 nsp3 区域的加工不受影响。透射电子显微镜显示,与回复病毒相比,在非允许温度下,MHV-Brts31 感染细胞中的双层膜囊泡数量减少。这些结果鉴定了 MHV 复制酶基因座中的一个新顺式作用元件,并表明 nsp3 在功能性 MHV 复制转录复合物的组装中具有重要作用。

相似文献

1
A new cistron in the murine hepatitis virus replicase gene.
J Virol. 2010 Oct;84(19):10148-58. doi: 10.1128/JVI.00901-10. Epub 2010 Jul 28.
3
Identification of mouse hepatitis virus papain-like proteinase 2 activity.
J Virol. 2000 Sep;74(17):7911-21. doi: 10.1128/jvi.74.17.7911-7921.2000.
5
Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins.
J Virol. 2004 Sep;78(18):9977-86. doi: 10.1128/JVI.78.18.9977-9986.2004.
6
Functional and genetic analysis of coronavirus replicase-transcriptase proteins.
PLoS Pathog. 2005 Dec;1(4):e39. doi: 10.1371/journal.ppat.0010039. Epub 2005 Dec 9.
10
Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication.
J Virol. 2007 Oct;81(19):10280-91. doi: 10.1128/JVI.00017-07. Epub 2007 Jul 18.

引用本文的文献

1
Endomembrane remodeling in SARS-CoV-2 infection.
Cell Insight. 2022 May 17;1(3):100031. doi: 10.1016/j.cellin.2022.100031. eCollection 2022 Jun.
2
Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses.
Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(4):247-260. doi: 10.1134/S1990747822050038. Epub 2022 Dec 9.
4
6
7
Structural and functional insights into non-structural proteins of coronaviruses.
Microb Pathog. 2021 Jan;150:104641. doi: 10.1016/j.micpath.2020.104641. Epub 2020 Nov 23.
8
Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles.
Antiviral Res. 2016 Nov;135:97-107. doi: 10.1016/j.antiviral.2016.10.005. Epub 2016 Oct 13.
9
Continuous and Discontinuous RNA Synthesis in Coronaviruses.
Annu Rev Virol. 2015 Nov;2(1):265-88. doi: 10.1146/annurev-virology-100114-055218.

本文引用的文献

1
Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus.
Cell Microbiol. 2010 Jun;12(6):844-61. doi: 10.1111/j.1462-5822.2010.01437.x. Epub 2010 Jan 20.
2
Dynamics of coronavirus replication-transcription complexes.
J Virol. 2010 Feb;84(4):2134-49. doi: 10.1128/JVI.01716-09. Epub 2009 Dec 9.
3
Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription.
J Virol. 2010 Feb;84(4):2169-75. doi: 10.1128/JVI.02011-09. Epub 2009 Dec 2.
4
The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent.
Nucleic Acids Res. 2010 Jan;38(1):203-14. doi: 10.1093/nar/gkp904. Epub 2009 Oct 29.
5
A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein.
Nat Struct Mol Biol. 2009 Nov;16(11):1134-40. doi: 10.1038/nsmb.1680. Epub 2009 Oct 18.
9
Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9. doi: 10.1073/pnas.0808790106. Epub 2009 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验