Diabetes Center, University of California San Francisco, San Francisco, California, United States of America.
PLoS One. 2010 Jul 22;5(7):e11726. doi: 10.1371/journal.pone.0011726.
Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.
METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging.
CONCLUSIONS/SIGNIFICANCE: These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy.
在体内靶向增强调节性 T 细胞(Treg)活性作为治疗自身免疫性疾病和移植的全身性治疗方法,可能会产生显著的脱靶效应,包括全身性免疫抑制,从而可能损害对感染和癌细胞的有益免疫反应。使用纯化扩增的 Treg 的过继细胞疗法是全身性治疗的一种有吸引力的替代方法,动物研究的结果表明,抗原特异性 Treg 比多克隆群体具有更高的治疗效力。然而,目前的方法在分离和扩增足够数量的内源性抗原特异性 Treg 以进行治疗干预方面受到限制。此外,FOXP3+Treg 主要属于 CD4+T 细胞亚群,因此通常是 MHC Ⅱ类特异性的,而 I 类特异性 Treg 可能通过促进直接组织识别而在体内最佳发挥功能。
方法/主要发现:为了克服这些限制,我们开发了一种新的方法来产生大量的抗原特异性 Treg,涉及将慢病毒 T 细胞受体(TCR)基因转移到体外扩增的多克隆天然 Treg 群体中。用高亲和力 I 类特异性 TCR 重定向的 Treg 能够在 HLA-A*0201 的背景下识别黑色素瘤抗原酪氨酸酶,并可以在扩增过程中通过与肽负载的人工抗原呈递细胞进行抗原特异性再激活进一步富集。这些体外扩增的 Treg 继续表达 FOXP3 和功能性 TCR,并保持抑制针对酪氨酸酶的常规 T 细胞反应以及旁观者 T 细胞反应的能力。在肿瘤模型系统中使用这种方法,设计表达酪氨酸酶 TCR 的小鼠 Treg 有效地阻止了基于肿瘤细胞生长和荧光素酶报告基因成像的抗原特异性效应 T 细胞(Teff)的活性。
结论/意义:这些结果支持 I 类限制性 TCR 转移作为一种有前途的策略来重定向 Treg 的功能特性,并为更有效的过继细胞治疗提供了依据。