Suppr超能文献

流感感染剂量可能解释了 1918-1919 年流感大流行的第二波和第三波高死亡率的原因。

Influenza infectious dose may explain the high mortality of the second and third wave of 1918-1919 influenza pandemic.

机构信息

Life and Health Sciences Research Institute, School of Health Sciences, Universidade do Minho, Braga, Portugal.

出版信息

PLoS One. 2010 Jul 26;5(7):e11655. doi: 10.1371/journal.pone.0011655.

Abstract

BACKGROUND

It is widely accepted that the shift in case-fatality rate between waves during the 1918 influenza pandemic was due to a genetic change in the virus. In animal models, the infectious dose of influenza A virus was associated to the severity of disease which lead us to propose a new hypothesis. We propose that the increase in the case-fatality rate can be explained by the dynamics of disease and by a dose-dependent response mediated by the number of simultaneous contacts a susceptible person has with infectious ones.

METHODS

We used a compartment model with seasonality, waning of immunity and a Holling type II function, to model simultaneous contacts between a susceptible person and infectious ones. In the model, infected persons having mild or severe illness depend both on the proportion of infectious persons in the population and on the level of simultaneous contacts between a susceptible and infectious persons. We further allowed for a high or low rate of waning immunity and volunteer isolation at different times of the epidemic.

RESULTS

In all scenarios, case-fatality rate was low during the first wave (Spring) due to a decrease in the effective reproduction number. The case-fatality rate in the second wave (Autumn) depended on the ratio between the number of severe cases to the number of mild cases since, for each 1000 mild infections only 4 deaths occurred whereas for 1000 severe infections there were 20 deaths. A third wave (late Winter) was dependent on the rate for waning immunity or on the introduction of new susceptible persons in the community. If a group of persons became voluntarily isolated and returned to the community some days latter, new waves occurred. For a fixed number of infected persons the overall case-fatality rate decreased as the number of waves increased. This is explained by the lower proportion of infectious individuals in each wave that prevented an increase in the number of severe infections and thus of the case-fatality rate.

CONCLUSION

The increase on the proportion of infectious persons as a proxy for the increase of the infectious dose a susceptible person is exposed, as the epidemic develops, can explain the shift in case-fatality rate between waves during the 1918 influenza pandemic.

摘要

背景

人们普遍认为,1918 年流感大流行期间两次浪潮之间病死率的变化归因于病毒的遗传变化。在动物模型中,流感 A 病毒的感染剂量与疾病的严重程度相关,这使我们提出了一个新的假设。我们假设,病死率的增加可以通过疾病的动态变化和易感者与感染者同时接触的数量的剂量依赖性反应来解释。

方法

我们使用了一个具有季节性、免疫衰减和 Holling 型 II 功能的 compartment 模型,来模拟易感者与感染者之间的同时接触。在该模型中,感染轻度或重度疾病的人既取决于人群中感染人数的比例,也取决于易感者与感染者同时接触的水平。我们还允许在流行的不同时间内具有高或低的免疫衰减率和志愿者隔离。

结果

在所有情况下,由于有效繁殖数的减少,第一波(春季)的病死率都较低。第二波(秋季)的病死率取决于严重病例数与轻度病例数的比例,因为每 1000 例轻度感染中仅发生 4 例死亡,而每 1000 例严重感染中有 20 例死亡。第三波(冬末)取决于免疫衰减率或社区中新的易感者的引入。如果一组人自愿隔离并在几天后返回社区,则会出现新的浪潮。对于固定数量的感染者,随着波数的增加,总体病死率会降低。这是因为在每一波中,传染性个体的比例较低,从而防止了严重感染数量的增加,进而降低了病死率。

结论

随着流行的发展,传染性个体比例的增加可以作为暴露于易感者的感染剂量增加的指标,这可以解释 1918 年流感大流行期间两次浪潮之间病死率的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e89/2909907/6ba038dc34b1/pone.0011655.g001.jpg

相似文献

2
Prior immunity helps to explain wave-like behaviour of pandemic influenza in 1918-9.
BMC Infect Dis. 2010 May 25;10:128. doi: 10.1186/1471-2334-10-128.
3
Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.
J Theor Biol. 2009 Dec 21;261(4):584-92. doi: 10.1016/j.jtbi.2009.08.020. Epub 2009 Aug 22.
6
Understanding influenza transmission, immunity and pandemic threats.
Influenza Other Respir Viruses. 2009 Jul;3(4):143-9. doi: 10.1111/j.1750-2659.2009.00089.x.
8
Quantifying social distancing arising from pandemic influenza.
J R Soc Interface. 2008 Jun 6;5(23):631-9. doi: 10.1098/rsif.2007.1197.
9

引用本文的文献

3
Virus Load Kinetics in Lassa Fever Patients Treated With Ribavirin: A Retrospective Cohort Study From Southern Nigeria.
Open Forum Infect Dis. 2024 Oct 15;11(10):ofae575. doi: 10.1093/ofid/ofae575. eCollection 2024 Oct.
4
Symptom propagation in respiratory pathogens of public health concern: a review of the evidence.
J R Soc Interface. 2024 Jul;21(216):20240009. doi: 10.1098/rsif.2024.0009. Epub 2024 Jul 24.
5
Epidemiological and health economic implications of symptom propagation in respiratory pathogens: A mathematical modelling investigation.
PLoS Comput Biol. 2024 May 3;20(5):e1012096. doi: 10.1371/journal.pcbi.1012096. eCollection 2024 May.
8
Lost Lessons of the 1918 Influenza: The 1920s Working Hypothesis, the Public Health Paradigm, and the Prevention of Deadly Pandemics.
Am J Public Health. 2022 Oct;112(10):1454-1464. doi: 10.2105/AJPH.2022.306976. Epub 2022 Aug 25.
10
COVID-19 Pandemic: Public Health Risk Assessment and Risk Mitigation Strategies.
J Pers Med. 2021 Nov 23;11(12):1243. doi: 10.3390/jpm11121243.

本文引用的文献

3
Aerosol transmission of influenza A virus: a review of new studies.
J R Soc Interface. 2009 Dec 6;6 Suppl 6(Suppl 6):S783-90. doi: 10.1098/rsif.2009.0302.focus. Epub 2009 Sep 22.
4
Mortality burden of the 1918-1919 influenza pandemic in Europe.
Influenza Other Respir Viruses. 2009 May;3(3):99-106. doi: 10.1111/j.1750-2659.2009.00080.x.
5
The signature features of influenza pandemics--implications for policy.
N Engl J Med. 2009 Jun 18;360(25):2595-8. doi: 10.1056/NEJMp0903906. Epub 2009 May 7.
6
Host genetic background strongly influences the response to influenza a virus infections.
PLoS One. 2009;4(3):e4857. doi: 10.1371/journal.pone.0004857. Epub 2009 Mar 18.
7
Influenza seasonality: lifting the fog.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3645-6. doi: 10.1073/pnas.0900933106.
8
A comparative study of the 1918-1920 influenza pandemic in Japan, USA and UK: mortality impact and implications for pandemic planning.
Epidemiol Infect. 2009 Aug;137(8):1062-72. doi: 10.1017/S0950268809002088. Epub 2009 Feb 12.
9
Absolute humidity modulates influenza survival, transmission, and seasonality.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. doi: 10.1073/pnas.0806852106. Epub 2009 Feb 9.
10
Time from illness onset to death, 1918 influenza and pneumococcal pneumonia.
Emerg Infect Dis. 2009 Feb;15(2):346-7. doi: 10.3201/eid1502.081208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验