Carnelli D, Gastaldi D, Sassi V, Contro R, Ortiz C, Vena P
Department of Structural Engineering, Laboratory of Biological Structure Mechanics (LaBS), Politecnico di Milano, 20133, Italy.
J Biomech Eng. 2010 Aug;132(8):081008. doi: 10.1115/1.4001358.
A finite element model was developed for numerical simulations of nanoindentation tests on cortical bone. The model allows for anisotropic elastic and post-yield behavior of the tissue. The material model for the post-yield behavior was obtained through a suitable linear transformation of the stress tensor components to define the properties of the real anisotropic material in terms of a fictitious isotropic solid. A tension-compression yield stress mismatch and a direction-dependent yield stress are allowed for. The constitutive parameters are determined on the basis of literature experimental data. Indentation experiments along the axial (the longitudinal direction of long bones) and transverse directions have been simulated with the purpose to calculate the indentation moduli and the tissue hardness in both the indentation directions. The results have shown that the transverse to axial mismatch of indentation moduli was correctly simulated regardless of the constitutive parameters used to describe the post-yield behavior. The axial to transverse hardness mismatch observed in experimental studies (see, for example, Rho et al. [1999, "Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation," J. Biomed. Mater. Res., 45, pp. 48-54] for results on human tibial cortical bone) can be correctly simulated through an anisotropic yield constitutive model. Furthermore, previous experimental results have shown that cortical bone tissue subject to nanoindentation does not exhibit piling-up. The numerical model presented in this paper shows that the probe tip-tissue friction and the post-yield deformation modes play a relevant role in this respect; in particular, a small dilatation angle, ruling the volumetric inelastic strain, is required to approach the experimental findings.
开发了一种有限元模型,用于对皮质骨纳米压痕试验进行数值模拟。该模型考虑了组织的各向异性弹性和屈服后行为。通过对应力张量分量进行适当的线性变换,获得了屈服后行为的材料模型,以便根据虚拟各向同性固体来定义真实各向异性材料的特性。允许存在拉伸 - 压缩屈服应力失配和与方向有关的屈服应力。本构参数是根据文献实验数据确定的。模拟了沿轴向(长骨的纵向)和横向的压痕实验,目的是计算两个压痕方向上的压痕模量和组织硬度。结果表明,无论用于描述屈服后行为的本构参数如何,压痕模量的横向与轴向失配都得到了正确模拟。通过各向异性屈服本构模型可以正确模拟实验研究中观察到的轴向与横向硬度失配(例如,见Rho等人[1999年,“通过纳米压痕测量的人体骨组织微观结构成分的弹性特性”,《生物医学材料研究杂志》,45卷,第48 - 54页]中关于人胫骨皮质骨的结果)。此外,先前的实验结果表明,经受纳米压痕的皮质骨组织不会出现堆积现象。本文提出的数值模型表明,探针尖端与组织之间的摩擦以及屈服后变形模式在这方面起着重要作用;特别是,需要一个控制体积非弹性应变的小膨胀角才能接近实验结果。
Acta Bioeng Biomech. 2015
J Mech Behav Biomed Mater. 2011-6-12
J Mech Behav Biomed Mater. 2009-10
Biomech Model Mechanobiol. 2020-12
Biomech Model Mechanobiol. 2017-5-12
J Biomech. 2012-8-9