Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
Biosens Bioelectron. 2010 Dec 15;26(4):1131-6. doi: 10.1016/j.bios.2010.07.008. Epub 2010 Jul 31.
A nanoplasmonic biosensor chip with integrated electrical detection is presented. The concept is based on the local refractive index sensitivity of nanoplasmonic gold nanodisks (110 nm in diameter and 20 nm in height) that are fabricated, through a parallel method, directly on an array of silicon solar cells or photoactive diodes. The nanoplasmonic properties of the sensor chip were investigated both optically and electrically, with excellent agreement between the two. We show that local changes in the refractive index of the surrounding environment gives changes in the nanoplasmonic properties of the gold nanodisks, which induce corresponding changes in the photocurrent at single wavelengths of the nanoplasmonic solar cells. With a simple light-emitting diode as light source, and together with a material-specific modification protocol, the photocurrent output of the nanoplasmonic sensor chip was successfully used to monitor a specific biorecognition reaction in real-time.
提出了一种具有集成电检测功能的纳米等离子体生物传感器芯片。该概念基于纳米等离子体金纳米盘(直径 110nm,高度 20nm)的局部折射率灵敏度,这些纳米盘通过平行方法直接在硅太阳能电池或光电二极管阵列上制造。通过光学和电学两种方法对传感器芯片的纳米等离子体特性进行了研究,两种方法的结果非常吻合。我们表明,周围环境的局部折射率变化会导致金纳米盘的纳米等离子体特性发生变化,从而在纳米等离子体太阳能电池的单个波长处引起相应的光电流变化。使用简单的发光二极管作为光源,并结合特定的材料修饰方案,成功地利用纳米等离子体传感器芯片的光电流输出实时监测特定的生物识别反应。