Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.
Neuroscience. 2010 Oct 27;170(3):961-70. doi: 10.1016/j.neuroscience.2010.07.036. Epub 2010 Jul 29.
Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence (MGE) than the lateral ganglionic eminence (LGE) or cerebral wall (CW). Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding the mice with transgenic mouse lines available already.
多巴胺及其受体在胚胎早期出现在大脑中,表明多巴胺在大脑发育中起作用。事实上,多巴胺受体失衡是由于 D1-和 D2-受体活性之间的生理平衡受损而导致的,这种失衡会干扰大脑发育,并导致大脑结构和功能持续变化。多巴胺受体失衡可以通过药理学或遗传学方法在实验中产生。药理学方法往往会激活或拮抗所有细胞类型的受体。在传统的基因敲除模型中,受体失衡发生在发育过程中和成熟时。因此,在这些模型中,检测多巴胺失衡对特定细胞类型(例如前体细胞与有丝分裂后细胞)或特定脑发育时期(例如产前或产后时期)的影响是不可行的。我们描述了一种新的转基因小鼠模型,该模型基于四环素依赖性诱导基因表达系统,其中多巴胺 D1-受体转基因表达在胚胎脑的神经上皮细胞中选择性诱导,在实验者选择的脑发育间隔期内。在该模型中,强力霉素诱导的转基因表达导致 D1-受体的显著过表达,并且 S 期标记物溴脱氧尿苷掺入基底和背侧端脑的神经上皮细胞显著减少,表明对端脑神经发生有明显影响。D1-受体过表达在内侧神经节隆起(MGE)中的水平高于外侧神经节隆起(LGE)或大脑皮层(CW)。此外,尽管转基因在神经上皮细胞中选择性诱导,但 D1-受体蛋白过表达似乎在有丝分裂后细胞中持续存在。该小鼠模型可以通过与已经存在的转基因小鼠系杂交,对其他转基因进行神经上皮细胞特异性诱导表达,或在特定脑区诱导 D1-受体转基因表达进行修饰。