Suppr超能文献

新型土壤 nirK 型反硝化菌的分离、遗传及功能特性研究。

Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers.

机构信息

Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

出版信息

Syst Appl Microbiol. 2010 Oct;33(6):337-47. doi: 10.1016/j.syapm.2010.06.004. Epub 2010 Aug 1.

Abstract

Denitrification, the reduction of nitrogen oxides (NO(3)(-) and NO(2)(-)) to N(2) via the intermediates NO and N(2)O, is crucial for nitrogen turnover in soils. Cultivation-independent approaches that applied nitrite reductase genes (nirK/nirS) as marker genes to detect denitrifiers showed a predominance of genes presumably derived from as yet uncultured organisms. However, the phylogenetic affiliation of these organisms remains unresolved since the ability to denitrify is widespread among phylogenetically unrelated organisms. In this study, denitrifiers were cultured using a strategy to generally enrich soil microorganisms. Of 490 colonies screened, eight nirK-containing isolates were phylogenetically identified (16S rRNA genes) as members of the Rhizobiales. A nirK gene related to a large cluster of sequences from uncultured bacteria mainly retrieved from soil was found in three isolates classified as Bradyrhizobium sp. Additional isolates were classified as Bradyrhizobium japonicum and Bosea sp. that contained nirK genes also closely related to the nirK from these strains. These isolates denitrified, albeit with different efficiencies. In Devosia sp., nirK was the only denitrification gene detected. Two Mesorhizobium sp. isolates contained a nirK gene also related to nirK from cultured Mesorhizobia and uncultured soil bacteria but no gene encoding nitric oxide or nitrous oxide reductase. These isolates accumulated NO under nitrate-reducing conditions without growth, presumably due to the lethal effects of NO. This showed the presence of a functional nitrite reductase but lack of a nitric oxide reductase. In summary, similar nirK genotypes recurrently detected mainly in soils likely originated from Rhizobia, and functional differences were presumably strain-dependent.

摘要

反硝化作用,即通过中间产物一氧化氮(NO)和一氧化二氮(N2O)将氮氧化物(NO3-和 NO2-)还原为 N2,对土壤中的氮循环至关重要。应用亚硝酸盐还原酶基因(nirK/nirS)作为标记基因来检测反硝化菌的非培养方法表明,这些基因主要源自尚未培养的生物。然而,由于具有反硝化能力的生物广泛存在于系统发育上不相关的生物中,这些生物的系统发育关系仍未解决。在本研究中,采用一种普遍富集土壤微生物的策略来培养反硝化菌。在筛选的 490 个菌落中,有 8 个含有 nirK 的分离物通过 16S rRNA 基因被鉴定为根瘤菌目成员。在 3 个被分类为慢生根瘤菌属的分离物中发现了一个与主要从土壤中分离的未培养细菌的大序列簇相关的 nirK 基因。其他分离物被分类为慢生根瘤菌和 Bosea 属,它们含有与这些菌株的 nirK 密切相关的 nirK 基因。这些分离物能够进行反硝化作用,尽管效率不同。在 Devosia sp.中,只检测到 nirK 是唯一的反硝化基因。两个 Mesorhizobium sp. 分离物含有一个 nirK 基因,该基因也与培养的 Mesorhizobia 和未培养的土壤细菌的 nirK 基因相关,但没有编码一氧化氮或一氧化二氮还原酶的基因。这些分离物在硝酸盐还原条件下积累 NO 而没有生长,可能是由于 NO 的致命作用。这表明存在功能正常的亚硝酸盐还原酶,但缺乏一氧化氮还原酶。综上所述,主要在土壤中反复检测到的相似的 nirK 基因型可能源自根瘤菌,而功能差异可能取决于菌株。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验