Suppr超能文献

人类认知中的交互主导动力学:超越 1/f(alpha)波动。

Interaction-dominant dynamics in human cognition: beyond 1/f(alpha) fluctuation.

机构信息

Human Movement Science Programme, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

J Exp Psychol Gen. 2010 Aug;139(3):436-63. doi: 10.1037/a0019098.

Abstract

It has been suggested that human behavior in general and cognitive performance in particular emerge from coordination between multiple temporal scales. In this article, we provide quantitative support for such a theory of interaction-dominant dynamics in human cognition by using wavelet-based multifractal analysis and accompanying multiplicative cascading process on the response series of 4 different cognitive tasks: simple response, word naming, choice decision, and interval estimation. Results indicated that the major portion of these response series had multiplicative interactions between temporal scales, visible as intermittent periods of large and irregular fluctuations (i.e., a multifractal structure). Comparing 2 component-dominant models of 1/f(alpha) fluctuations in cognitive performance with the multiplicative cascading process indicated that the multifractal structure could not be replicated by these component-dominant models. Furthermore, a similar multifractal structure was shown to be present in a model of self-organized criticality in the human nervous system, similar to a spatial extension of the multiplicative cascading process. These results illustrate that a wavelet-based multifractal analysis and the multiplicative cascading process form an appropriate framework to characterize interaction-dominant dynamics in human cognition. This new framework goes beyond the identification of 1/f(alpha) power laws and non-gaussian distributions in response series as used in previous studies. The present article provides quantitative support for a paradigm shift toward interaction-dominant dynamics in human cognition.

摘要

有人认为,人类行为,尤其是认知表现,是从多个时间尺度的协调中产生的。在本文中,我们通过使用基于小波的多重分形分析和对 4 种不同认知任务(简单反应、单词命名、选择决策和区间估计)的响应序列进行乘法级联过程,为人类认知的这种交互主导动力学理论提供了定量支持。结果表明,这些响应序列的大部分具有时间尺度之间的乘法相互作用,表现为大而不规则波动的间歇性周期(即多重分形结构)。将认知表现中的 1/f(alpha)波动的两种分量主导模型与乘法级联过程进行比较表明,这些分量主导模型无法复制多重分形结构。此外,在人类神经系统自组织临界性模型中也显示出类似的多重分形结构,类似于乘法级联过程的空间扩展。这些结果表明,基于小波的多重分形分析和乘法级联过程形成了一个合适的框架,用于描述人类认知中的交互主导动力学。这个新的框架超越了以前研究中在响应序列中识别 1/f(alpha)幂律和非高斯分布的方法。本文为人类认知向交互主导动力学的范式转变提供了定量支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验