Suppr超能文献

克服血红素悖论:细菌病原体中的血红素毒性和耐受性。

Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens.

机构信息

Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Infect Immun. 2010 Dec;78(12):4977-89. doi: 10.1128/IAI.00613-10. Epub 2010 Aug 2.

Abstract

Virtually all bacterial pathogens require iron to infect vertebrates. The most abundant source of iron within vertebrates is in the form of heme as a cofactor of hemoproteins. Many bacterial pathogens have elegant systems dedicated to the acquisition of heme from host hemoproteins. Once internalized, heme is either degraded to release free iron or used intact as a cofactor in catalases, cytochromes, and other bacterial hemoproteins. Paradoxically, the high redox potential of heme makes it a liability, as heme is toxic at high concentrations. Although a variety of mechanisms have been proposed to explain heme toxicity, the mechanisms by which heme kills bacteria are not well understood. Nonetheless, bacteria employ various strategies to protect against and eliminate heme toxicity. Factors involved in heme acquisition and detoxification have been found to contribute to virulence, underscoring the physiological relevance of heme stress during pathogenesis. Herein we describe the current understanding of the mechanisms of heme toxicity and how bacterial pathogens overcome the heme paradox during infection.

摘要

几乎所有的细菌病原体都需要铁来感染脊椎动物。脊椎动物体内铁的最丰富形式是以血红素作为血红蛋白辅基的形式存在。许多细菌病原体都有专门的系统来从宿主血红蛋白中获取血红素。一旦被内化,血红素要么被降解以释放游离铁,要么完整地用作过氧化氢酶、细胞色素和其他细菌血红蛋白中的辅因子。矛盾的是,由于血红素的高氧化还原电位使其成为一种负担,因为高浓度的血红素是有毒的。尽管已经提出了多种机制来解释血红素毒性,但血红素杀死细菌的机制尚不清楚。尽管如此,细菌还是采用了各种策略来防止和消除血红素毒性。已经发现参与血红素摄取和解毒的因子有助于毒力,这强调了发病机制过程中血红素应激的生理相关性。本文描述了血红素毒性的机制以及细菌病原体如何在感染过程中克服血红素悖论的最新理解。

相似文献

1
Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens.
Infect Immun. 2010 Dec;78(12):4977-89. doi: 10.1128/IAI.00613-10. Epub 2010 Aug 2.
2
Heme Synthesis and Acquisition in Bacterial Pathogens.
J Mol Biol. 2016 Aug 28;428(17):3408-28. doi: 10.1016/j.jmb.2016.03.018. Epub 2016 Mar 24.
3
Intracellular metalloporphyrin metabolism in Staphylococcus aureus.
Biometals. 2007 Jun;20(3-4):333-45. doi: 10.1007/s10534-006-9032-0. Epub 2007 Mar 27.
4
The role of host heme in bacterial infection.
Biol Chem. 2022 Oct 14;403(11-12):1017-1029. doi: 10.1515/hsz-2022-0192. Print 2022 Nov 25.
6
Iron uptake mechanisms as key virulence factors in bacterial fish pathogens.
J Appl Microbiol. 2020 Jul;129(1):104-115. doi: 10.1111/jam.14595. Epub 2020 Feb 12.
7
Heme homeostasis and its regulation by hemoproteins in bacteria.
mLife. 2024 Jul 11;3(3):327-342. doi: 10.1002/mlf2.12120. eCollection 2024 Sep.
9
Heme and virulence: how bacterial pathogens regulate, transport and utilize heme.
Nat Prod Rep. 2007 Jun;24(3):511-22. doi: 10.1039/b604193k. Epub 2007 Apr 11.
10
Heme metabolism in nonerythroid cells.
J Biol Chem. 2024 Apr;300(4):107132. doi: 10.1016/j.jbc.2024.107132. Epub 2024 Mar 2.

引用本文的文献

1
Inhibiting heme piracy by pathogenic Escherichia coli using de novo-designed proteins.
Nat Commun. 2025 Jul 9;16(1):6066. doi: 10.1038/s41467-025-60612-9.
2
FapR regulates HssRS-mediated heme homeostasis in .
mBio. 2025 Jun 11;16(6):e0205724. doi: 10.1128/mbio.02057-24. Epub 2025 May 23.
3
Commensal resilience: ancient ecological lessons for the modern microbiota.
Infect Immun. 2025 Jun 10;93(6):e0050224. doi: 10.1128/iai.00502-24. Epub 2025 May 19.
4
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis.
Mol Plant Pathol. 2024 Nov;25(11):e70007. doi: 10.1111/mpp.70007.
5
Unraveling the full impact of SPD_0739: a key effector in iron homeostasis.
Microbiol Spectr. 2024 Oct 29;12(12):e0133124. doi: 10.1128/spectrum.01331-24.
7
Heme homeostasis and its regulation by hemoproteins in bacteria.
mLife. 2024 Jul 11;3(3):327-342. doi: 10.1002/mlf2.12120. eCollection 2024 Sep.
8
Signal-sensing triggers the shutdown of HemKR, regulating heme and iron metabolism in the spirochete Leptospira biflexa.
PLoS One. 2024 Sep 26;19(9):e0311040. doi: 10.1371/journal.pone.0311040. eCollection 2024.
10
FapR regulates HssRS-mediated heme homeostasis in .
bioRxiv. 2024 Jul 8:2024.07.08.602573. doi: 10.1101/2024.07.08.602573.

本文引用的文献

3
Transcriptional regulation of hemO encoding heme oxygenase in Clostridium perfringens.
J Microbiol. 2010 Feb;48(1):96-101. doi: 10.1007/s12275-009-0384-3. Epub 2010 Mar 11.
4
Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis.
J Mol Biol. 2010 Jan 22;395(3):595-608. doi: 10.1016/j.jmb.2009.11.025. Epub 2009 Nov 14.
5
Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis.
J Biol Chem. 2009 Nov 13;284(46):32138-46. doi: 10.1074/jbc.M109.040915. Epub 2009 Sep 15.
6
Hemoglobin and heme scavenger receptors.
Antioxid Redox Signal. 2010 Feb;12(2):261-73. doi: 10.1089/ars.2009.2792.
8
Heme-dependent autophosphorylation of a heme sensor kinase, ChrS, from Corynebacterium diphtheriae reconstituted in proteoliposomes.
FEBS Lett. 2009 Jul 7;583(13):2244-8. doi: 10.1016/j.febslet.2009.06.001. Epub 2009 Jun 6.
9
The heme sensor system of Staphylococcus aureus.
Contrib Microbiol. 2009;16:120-135. doi: 10.1159/000219376. Epub 2009 Jun 2.
10
Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection.
Mol Microbiol. 2009 May;72(3):763-78. doi: 10.1111/j.1365-2958.2009.06684.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验