Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India.
J Med Chem. 2010 Aug 26;53(16):6079-88. doi: 10.1021/jm100483y.
Antimicrobial peptides hold promise against antibiotic resistant pathogens. Here, to find the physicochemical origins of potency and broad spectrum antimicrobial action, we report the structure-activity relationships of synthetic intermediates (peptides A-D) of a potent lysine branched dimeric antibacterial peptide DeltaFd. Our studies show that a tetracationic character in a weak helical fold (peptide C) elicits potent but narrow spectrum antimicrobial activity [Minimum inhibitory concentrations (MICs) E. coli 10 microM, S. aureus>100 microM]. In contrast, a hexacationic character in a strong, amphipathic helix (DeltaFd) confers potent and broad spectrum action [MICs E. coli 2.5 microM, S. aureus 5 microM]. While DeltaFd caused rapid and potent permeabilization of the E. coli membranes, the less helical intermediates (peptides A-D) showed slow and weak to no responses. Two seminal findings that may aid future drug design are (a) at identical helicity, increasing charge enhanced outer membrane permeabilization, and (b) at identical charge, increasing helicity stimulated rate of outer membrane permeabilization and kill kinetics besides enhancing potency leading to broad spectrum action.
抗菌肽有望对抗抗生素耐药病原体。在这里,为了找到效力和广谱抗菌作用的理化起源,我们报告了一种有效的赖氨酸分支二聚体抗菌肽 DeltaFd 的合成中间体(肽 A-D)的结构-活性关系。我们的研究表明,在弱螺旋折叠中具有四阳离子特性(肽 C)会引起强烈但窄谱的抗菌活性[最小抑菌浓度(MICs)大肠杆菌 10 μM,金黄色葡萄球菌> 100 μM]。相比之下,在强两亲螺旋中具有六阳离子特性(DeltaFd)赋予了强大且广谱的作用[MICs 大肠杆菌 2.5 μM,金黄色葡萄球菌 5 μM]。虽然 DeltaFd 导致大肠杆菌膜的快速和强大的通透性,但螺旋性较低的中间体(肽 A-D)则显示出缓慢,弱或没有反应。有两个重要的发现可能有助于未来的药物设计:(a)在相同的螺旋性下,增加电荷会增强外膜通透性;(b)在相同的电荷下,增加螺旋性会刺激外膜通透性和杀伤动力学的速度,除了提高效力从而导致广谱作用。