Suppr超能文献

脂质微域的物质特性:胆固醇对脂质微域刚性影响的力-体积成像研究。

Material properties of lipid microdomains: force-volume imaging study of the effect of cholesterol on lipid microdomain rigidity.

机构信息

School of Chemical and Physical Sciences, Flinders University, Adelaide, Australia.

出版信息

Biophys J. 2010 Aug 4;99(3):834-44. doi: 10.1016/j.bpj.2010.04.072.

Abstract

The effect of cholesterol (CHOL) on the material properties of supported lipid bilayers composed of lipid mixtures that mimic the composition of lipid microdomains was studied by force-volume (FV) imaging under near-physiological conditions. These studies were carried out with lipid mixtures of dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and sphingomyelin. FV imaging enabled simultaneous topology and force measurements of sphingomyelin-rich domains (higher domain (HD)) and phospholipid-rich domains (lower domain (LD)), which allowed quantitative measurement of the force needed to puncture the lipid bilayer with or without CHOL. The force required to penetrate the various domains of the bilayer was probed using high- and low-ionic-strength buffers as a function of increasing amounts of CHOL in the bilayer. The progressive addition of CHOL also led to a decreasing height difference between HD and LD. FV imaging further demonstrated a lack of adhesion between the atomic force microscope tip and the HD or LD at loads below the breakthrough force. These results can lead to a better understanding of the role that CHOL plays in the mechanical properties of cellular membranes in modulating membrane rigidity, which has important implications for cellular mechanotransduction.

摘要

在接近生理条件下,通过力-体积(FV)成像研究了胆固醇(CHOL)对模拟脂筏组成的脂质混合物支撑的脂质双层的材料性质的影响。这些研究是用二油酰基磷脂酰胆碱、二油酰基磷脂酰丝氨酸和神经鞘磷脂的脂质混合物进行的。FV 成像能够同时对富含鞘磷脂的域(高域(HD))和富含磷脂的域(低域(LD))进行拓扑和力测量,这允许定量测量用或不用 CHOL 刺穿脂质双层所需的力。使用高离子强度和低离子强度缓冲液作为双层中 CHOL 量增加的函数,探测穿透双层的各种域所需的力。CHOL 的逐步添加还导致 HD 和 LD 之间的高度差减小。FV 成像还表明,在突破力以下的负载下,原子力显微镜尖端与 HD 或 LD 之间不存在粘附力。这些结果可以更好地理解 CHOL 在调节膜刚性的细胞膜机械性能中的作用,这对细胞机械转导具有重要意义。

相似文献

2
Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
Biochim Biophys Acta Biomembr. 2021 Aug 1;1863(8):183626. doi: 10.1016/j.bbamem.2021.183626. Epub 2021 Apr 24.
4
Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
Biophys J. 2003 Mar;84(3):1827-32. doi: 10.1016/s0006-3495(03)74990-x.
5
Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation.
Biophys J. 2004 Aug;87(2):1092-100. doi: 10.1529/biophysj.104.041939.
6
Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
Langmuir. 2015 Nov 17;31(45):12417-25. doi: 10.1021/acs.langmuir.5b02863. Epub 2015 Nov 3.
7
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
9
High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes.
Chem Commun (Camb). 2018 Jun 19;54(50):6903-6906. doi: 10.1039/c8cc02201a.

引用本文的文献

2
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains.
Biophys J. 2023 Jun 6;122(11):2325-2341. doi: 10.1016/j.bpj.2023.02.029. Epub 2023 Mar 3.
3
Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane.
Exp Eye Res. 2022 Jul;220:109131. doi: 10.1016/j.exer.2022.109131. Epub 2022 May 27.
4
Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect.
Acta Pharm Sin B. 2019 Jul;9(4):858-870. doi: 10.1016/j.apsb.2019.02.010. Epub 2019 Mar 2.
5
Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance.
J Diabetes Res. 2017;2017:3941898. doi: 10.1155/2017/3941898. Epub 2017 Mar 6.
6
Morphological and physical analysis of natural phospholipids-based biomembranes.
PLoS One. 2014 Sep 19;9(9):e107435. doi: 10.1371/journal.pone.0107435. eCollection 2014.
7
HIV-1 antibodies and vaccine antigen selectively interact with lipid domains.
Biochim Biophys Acta. 2014 Oct;1838(10):2662-9. doi: 10.1016/j.bbamem.2014.07.007. Epub 2014 Jul 11.
8
Multiparametric imaging of biological systems by force-distance curve-based AFM.
Nat Methods. 2013 Sep;10(9):847-54. doi: 10.1038/nmeth.2602.

本文引用的文献

1
Membrane lipid domains and dynamics as detected by Laurdan fluorescence.
J Fluoresc. 1995 Mar;5(1):59-69. doi: 10.1007/BF00718783.
3
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
5
Kinetics membrane disruption due to drug interactions of chlorpromazine hydrochloride.
Langmuir. 2009 Jan 20;25(2):1086-90. doi: 10.1021/la803288s.
6
Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology.
Nat Nanotechnol. 2008 May;3(5):261-9. doi: 10.1038/nnano.2008.100.
7
Lipid rafts, cholesterol, and the brain.
Neuropharmacology. 2008 Dec;55(8):1265-73. doi: 10.1016/j.neuropharm.2008.02.019. Epub 2008 Mar 14.
8
Coupling of cholesterol-rich lipid phases in asymmetric bilayers.
Biochemistry. 2008 Feb 19;47(7):2190-8. doi: 10.1021/bi7021552. Epub 2008 Jan 24.
9
Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry.
J Am Chem Soc. 2007 Dec 26;129(51):15730-1. doi: 10.1021/ja0741675. Epub 2007 Nov 29.
10
Chemical force microscopy of single live cells.
Nano Lett. 2007 Oct;7(10):3026-30. doi: 10.1021/nl071476k. Epub 2007 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验