Guillaud François, Hannaert Patrick
Inserm U927, CHU La Milétrie, 2 rue de la Milétrie, BP 577, 86000 Poitiers, France.
Acta Biotheor. 2010 Sep;58(2-3):143-70. doi: 10.1007/s10441-010-9098-5. Epub 2010 Aug 4.
The renin-angiotensin system (RAS) is critical in sodium and blood pressure (BP) regulation, and in cardiovascular-renal (CVR) diseases and therapeutics. As a contribution to SAPHIR project, we present a realistic computer model of renin production and circulating RAS, integrated into Guyton's circulatory model (GCM). Juxtaglomerular apparatus, JGA, and Plasma modules were implemented in C ++/M2SL (Multi-formalism Multi-resolution Simulation Library) for fusion with GCM. Matlab optimization toolboxes were used for parameter identification. In JGA, renin production and granular cells recruitment (GCR) are controlled by perfusion pressure (PP), macula densa (MD), angiotensin II (Ang II), and renal sympathetic activity (RSNA). In Plasma, renin and ACE (angiotensin-converting enzyme) activities are integrated to yield Ang I and II. Model vs. data deviation is given as normalized root mean squared error (nRMSE; n points).
JGA and Plasma parameters were identified against selected experimental data. After fusion with GCM: (1) GCR parameters were identified against Laragh's PRA-natriuresis nomogram; (2) Renin production parameters were identified against two sets of data ([renin] transients vs. ACE or renin inhibition). Finally, GCR parameters were re-identified vs. Laragh's nomogram (nRMSE 8%, n = 9).
(1) model BP, PRA and [Ang II] are within reported ranges, and respond physiologically to sodium intake; (2) short-term Ang II infusion induces reported rise in BP and PRA. The modeled circulating RAS, in interaction with an integrated CVR, exhibits a realistic response to BP control maneuvers. This construction will allow for modelling hypertensive and CVR patients, including salt-sensitivity, polymorphisms, and pharmacotherapeutics.
肾素-血管紧张素系统(RAS)在钠和血压(BP)调节以及心血管-肾脏(CVR)疾病与治疗中起着关键作用。作为对蓝宝石项目的贡献,我们提出了一种肾素生成和循环RAS的真实计算机模型,并将其整合到盖顿循环模型(GCM)中。肾小球旁器(JGA)和血浆模块是用C++/M2SL(多形式多分辨率仿真库)实现的,以便与GCM融合。使用Matlab优化工具箱进行参数识别。在JGA中,肾素生成和颗粒细胞募集(GCR)受灌注压(PP)、致密斑(MD)、血管紧张素II(Ang II)和肾交感神经活动(RSNA)控制。在血浆中,肾素和血管紧张素转换酶(ACE)活性整合后产生血管紧张素I和II。模型与数据的偏差以归一化均方根误差(nRMSE;n个点)表示。
针对选定的实验数据确定JGA和血浆参数。与GCM融合后:(1)根据拉腊格的PRA-利钠素列线图确定GCR参数;(2)根据两组数据([肾素]瞬变与ACE或肾素抑制)确定肾素生成参数。最后,对照拉腊格列线图重新确定GCR参数(nRMSE 8%,n = 9)。
(1)模型的血压、PRA和[Ang II]在报告范围内,并对钠摄入产生生理反应;(2)短期输注Ang II会导致报告的血压和PRA升高。模拟的循环RAS与整合的CVR相互作用,对血压控制策略表现出真实反应。这种构建将允许对高血压和CVR患者进行建模,包括盐敏感性、多态性和药物治疗。